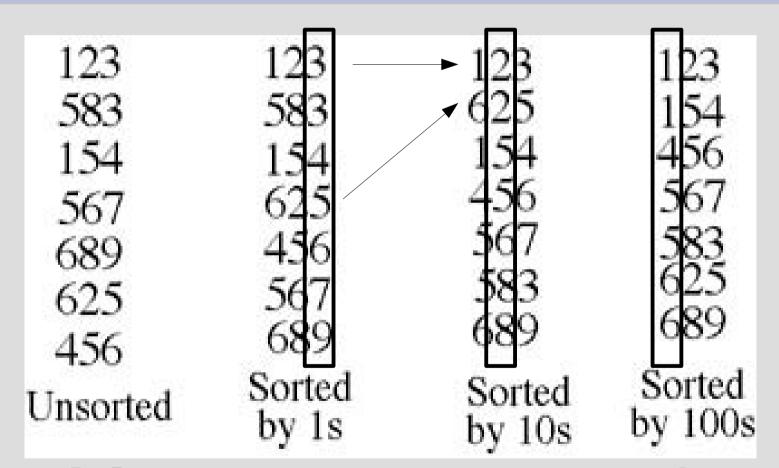


Announcements

Homework 1 posted, due Sunday Oct. 1

Use a **stable** sort to sort from the least significant digit to most

Psuedo code: (A=input) for i = 1 to d stable sort of A on digit i // i.e. use counting sort



Stable means you can draw lines without crossing for a single digit

Run time?

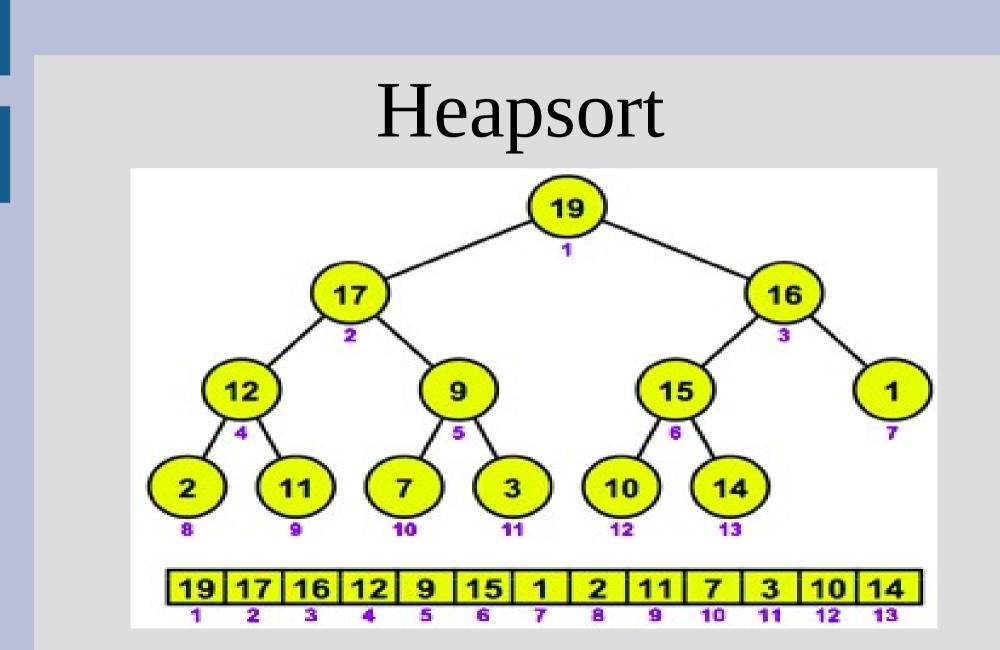
5

Run time?

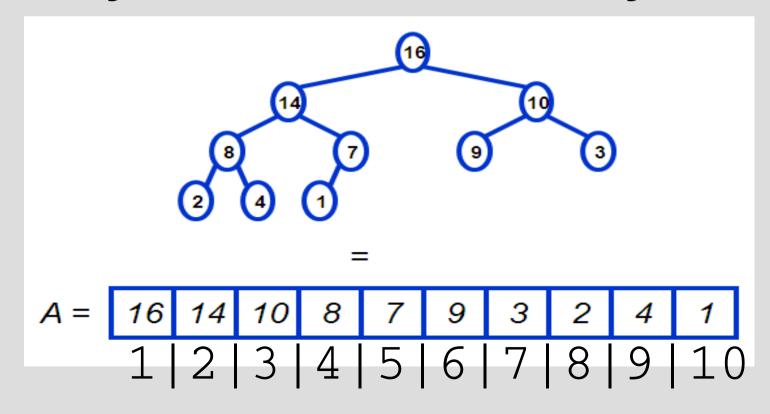
 $O((b/r)(n+2^r))$ b-bits total, r bits per 'digit' d = b/r digitsEach count sort takes $O(n + 2^r)$ runs count sort d times... $O(d(n+2^{r})) = O(b/r(n+2^{r}))$

Run time?

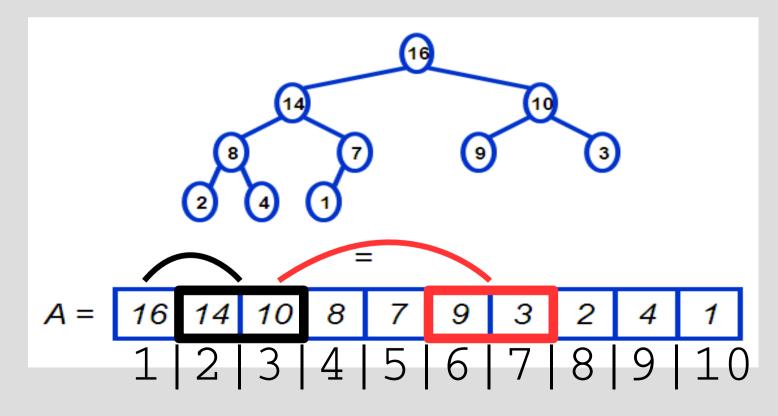
if $b < lg(n), \Theta(n)$ if $b \ge lg(n), \Theta(n \lg n)$



It is possible to represent binary trees as an array



index 'i' is the parent of '2i' and '2i+1'



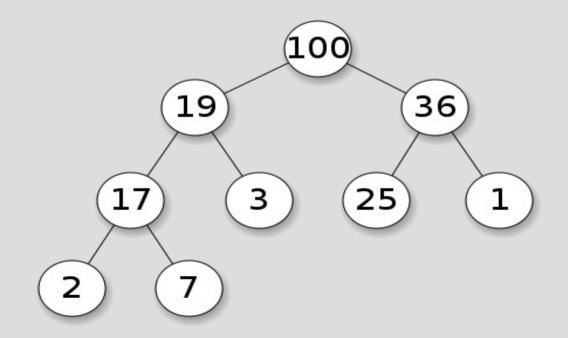
Is it possible to represent any tree with a constant branching factor as an array?

Is it possible to represent any tree with a constant branching factor as an array?

Yes, but the notation is awkward

Heaps

A <u>max heap</u> is a tree where the parent is larger than its children (A <u>min heap</u> is the opposite)



The idea behind heapsort is to:

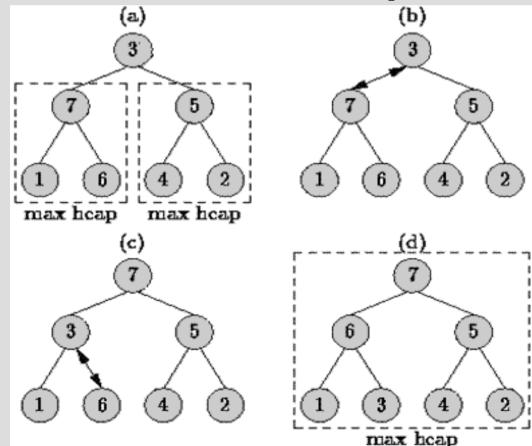
- 1. Build a heap
- 2. Pull out the largest (root) and re-compile the heap
- 3. (repeat)

To do this, we will define subroutines:

 Max-Heapify = maintains heap property

2. Build-Max-Heap = make sequence into a max-heap

Input: a root of two max-heaps Output: a max-heap



Pseudocode Max-Heapify(A,i): left = left(i) // 2*i right = right(i) // 2*i+1 L = arg_max(A[left], A[right], A[i]) if (L not i) exchange A[i] with A[L] Max-Heapify(A, L) // now make me do it!

Runtime?

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?Or... T(n) = T(1/2 n) + O(1)

Master's theorem

Master's theorem: (proof 4.6) For $a \ge 1$, $b \ge 1$, T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases) $O(n^c)$ for c < log_b a, T(n) is $\Theta(n^{logb a})$ $\Theta(n^{logb a})$, then T(n) is $\Theta(n^{logb a} \lg n)$ $\Omega(n^c)$ for c > log_b a, T(n) is $\Theta(f(n))$

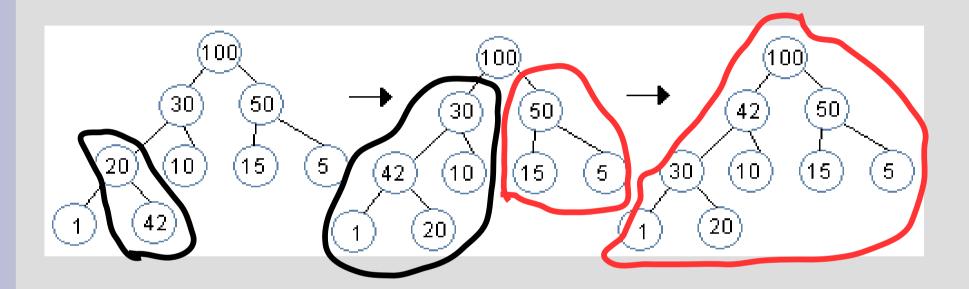
Runtime?

Obviously (is it?): Ig n

T(n) = T(2/3 n) + O(1) // why?Or... $T(n) = T(1/2 n) + O(1) = O(\lg n)$

Next we build a full heap from an unsorted sequence

Build-Max-Heap(A) for i = floor(A.length/2) to 1 Heapify(A, i)



Red part is already Heapified

Correctness: Base: Each alone leaf is a max-heap Step: if A[i] to A[n] are in a heap, then Heapify(A, i-1) will make i-1 a heap as well Termination: loop ends at i=1, which is the root (so all heap)

Runtime?

Runtime?

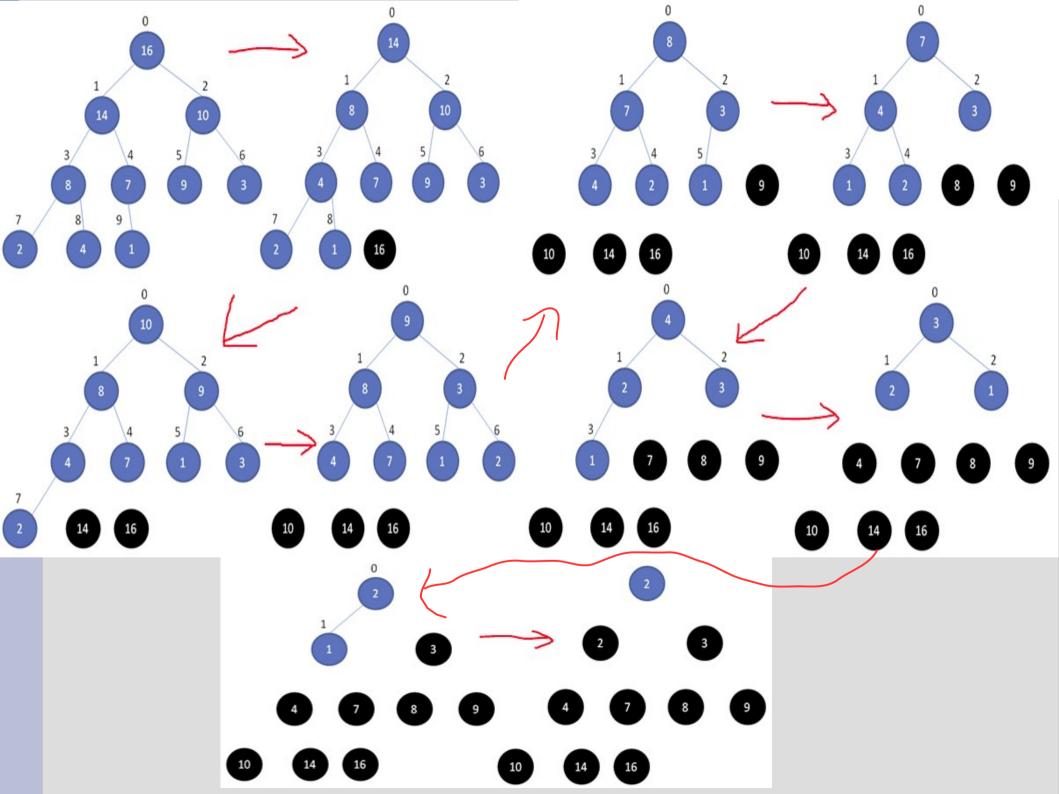
O(n lg n) is obvious, but we can get a better bound...

Show ceiling(n/2^{h+1}) nodes at any height 'h'

Heapify from height 'h' takes O(h)

 $sum_{h=0}^{lg n} ceiling(n/2^{h+1}) O(h)$ =O(n sum_{h=0}^{lg n} ceiling(h/2^{h+1})) (sum_{x=0}^{\infty} k x^{k} = x/(1-x)^{2}, x=1/2) =O(n 4/2) = O(n)

Heapsort(A): Build-Max-Heap(A) for i = A.length to 2 Swap A[1], A[i] A.heapsize = A.heapsize -1Max-Heapify(A, 1)



Runtime?

Runtime?

Run Max-Heapify O(n) times So... O(n lg n)

Heaps can also be used to implement priority queues (i.e. airplane boarding lines)

Operations supported are: Insert, Maximum, Exctract-Max and Increase-key

Maximum(A): return A[1]

```
Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize - 1
Max-Heapify(A, 1), return max
```

Increase-key(A, i, key): A[i] = key while (i>1 and A [floor(i/2)] < A[i]) swap A[i], A [floor(i/2)] i = floor(i/2)

Opposite of Max-Heapify... move high keys up instead of low down

Insert(A, key): A.heapsize = A.heapsize + 1 A [A.heapsize] = $-\infty$ Increase-key(A, A.heapsize, key)

Runtime?

Maximum = Extract-Max = Increase-Key = Insert =

Runtime?

Maximum = O(1)Extract-Max = $O(\lg n)$ Increase-Key = $O(\lg n)$ Insert = $O(\lg n)$

Sorting comparisons:

Average Worst-case Name **O(n²)** Insertion[s,i] **O(n²)** Merge[s,p] $O(n \log n)$ $O(n \lg n)$ Heap[i] O(n lg n) O(n lg n) Quick[p] **O(n²)** $O(n \log n)$ Counting[s] O(n + k)O(n + k)O(d(n+k))Radix[s] O(d(n+k))Bucket[s,p] **O(n²)** O(n)

Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg

