
Heapsort



Homework 1 posted,
due Sunday Oct. 1

Announcements



Radix sort

Use a stable sort to sort from the
least significant digit to most

Psuedo code: (A=input)
for i = 1 to d

stable sort of A on digit i 
// i.e. use counting sort
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Radix sort

Stable means you can draw lines
without crossing for a single digit
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Radix sort

Run time?
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Radix sort

Run time?

O( (b/r) (n+2r) )
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2r)
runs count sort d times...
O( d(n+2r)) = O( b/r (n + 2r))
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Radix sort

Run time?

if b < lg(n), Θ(n)
if b > lg(n), Θ(n lg n)
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Heapsort



Binary tree as array

It is possible to represent
binary trees as an array

1|2|3|4|5|6|7|8|9|10



Binary tree as array

index 'i' is the parent of '2i' and 
'2i+1'

1|2|3|4|5|6|7|8|9|10



Binary tree as array

Is it possible to represent 
any tree with a constant
branching factor as an array?



Binary tree as array

Is it possible to represent 
any tree with a constant
branching factor as an array?

Yes, but the notation is awkward



Heaps

A max heap is a tree where the
parent is larger than its children
(A min heap is the opposite)



Heapsort

The idea behind heapsort is to:

1.  Build a heap

2.  Pull out the largest (root)
and re-compile the heap

3.  (repeat)



Heapsort

To do this, we will define 
subroutines:

1. Max-Heapify = maintains heap
property 

2. Build-Max-Heap = make 
sequence into a max-heap



Max-Heapify

Input: a root of two max-heaps
Output: a max-heap



Max-Heapify

Pseudocode Max-Heapify(A,i):
left = left(i)      // 2*i
right = right(i)  // 2*i+1
L = arg_max( A[left], A[right], A[ i ])
if (L not i)

exchange A[ i ] with A[ L ]
Max-Heapify(A, L)

// now make me do it!



Max-Heapify

Runtime?



Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
  Or...
T(n) = T(1/2 n) + O(1)



Master's theorem

Master's theorem: (proof 4.6)
For a > 1, b > 1,T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases)
O(nc) for c < log

b
 a, T(n) is Θ(nlogb a)

Θ(nlogb a), then T(n) is Θ(nlogb a lg n)
Ω(nc) for c > log

b
 a, T(n) is Θ(f(n))



Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
  Or...
T(n) = T(1/2 n) + O(1) = O(lg n)



Build-Max-Heap

Next we build a full heap from
an unsorted sequence

Build-Max-Heap(A)
for i = floor( A.length/2 ) to 1

Heapify(A, i)



Build-Max-Heap

Red part is already Heapified



Build-Max-Heap

Correctness:
Base:  Each alone leaf is a 

max-heap
Step: if A[i] to A[n] are in a heap,

then Heapify(A, i-1) will make 
i-1 a heap as well

Termination: loop ends at i=1,
which is the root (so all heap)



Build-Max-Heap

Runtime?



Build-Max-Heap

Runtime?

O(n lg n) is obvious, but we can
get a better bound...

Show ceiling(n/2h+1) nodes at
any height 'h'



Build-Max-Heap

Heapify from height 'h' takes O(h)

sum
h=0

lg n ceiling(n/2h+1) O(h)
=O(n sum

h=0
lg n ceiling(h/2h+1))

(sum
x=0

∞ k xk = x/(1-x)2, x=1/2)
=O(n 4/2) = O(n)



Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2

Swap A[ 1 ], A[ i ]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)



Heapsort



Heapsort

Runtime?



Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n lg n)



Priority queues

Heaps can also be used to 
implement priority queues
(i.e. airplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max
and Increase-key



Priority queues

Maximum(A):
return A[ 1 ]

Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1),    return max



Priority queues

Increase-key(A, i, key):
A[ i ] = key
while ( i>1 and A [floor(i/2)] < A[i])

swap A[ i ], A [floor(i/2)]
i = floor(i/2)

Opposite of Max-Heapify... move
high keys up instead of low down



Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A [ A.heapsize] = -∞
Increase-key(A, A.heapsize, key)



Priority queues

Runtime?

Maximum = 
Extract-Max = 
Increase-Key = 
Insert = 



Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)



Sorting comparisons:

Name Average Worst-case
Insertion[s,i] O(n2) O(n2)
Merge[s,p] O(n lg n) O(n lg n)
Heap[i] O(n lg n) O(n lg n)
Quick[p] O(n lg n) O(n2)
Counting[s] O(n + k) O(n + k)
Radix[s] O(d(n+k)) O(d(n+k))
Bucket[s,p] O(n) O(n2)



Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg


