Sorting... more

ALGORITHMS
BY (OMPLEXITY
HDRE CDHPLE?% > | | |
LEFTPAD QUICKSORT G SELF- GOOGLE SPRALILING EXCEL SPREADSHEET
MERGE DRWNG SEARCH BUIT UP OVER 2D YEARS BY A

CAR

BACKEND

CHURCH GROUP IN NEBRASKA TO
COORDINATE THEIR SCHEDULING

Announcements

Homework posted, due next Sunday

3
I Quicksort

Runtime:

I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?

4
I Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average

Quicksort

Can bound number of checks against
pivot:

Let Xi,j = event Ali]| checked to Alj]
sum, ; X, = total number of checks
E[sumLj Xi,j]= SUm, E[Xi,j]

= Sum, Pr(Ali] check Aljl)

= Sum, Pr(Ali] or Alj] a pivot)

| © .
| Quicksort

= Sum, Pr(Ali] or Alj] a pivot)

I = sum,. (2 /j-1+1) // j-i+1 possibilties
<sum, O(lg n)
= O(n Ig n)

7
I Quicksort

Correctness:

I Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If Alj] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

8
I Quicksort

1wo Casl@lsaintenance of Loop Invariant (4)

r

I If A[j]> pivot: P ' !

« only increment |

=X > X
If A[j] < pivot: - ’ r
« iis incremented, A[j] = i& = 5
and A[i] are) " ﬁ | r
swapped and then j - :
Is incremented —— : = . -

5252004 Lecture 4 COSC3101A

Quicksort

Which is better for multi core,
I quicksort or merge sort?

[f the average run times are the same,
why might you choose quicksort?

! 10 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?

P 1 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?
Uses less space.

12 |
Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is ®(n 1g n)

| 14 |
Sorting!

All n! permutations must be leaves

(123)]

(13.2)] (3.12) (23.1) (3.2.1)]
Worst case Is tree height

! 15 |
I Sorting!

A binary tree (either < or >) of
I height h has 2" leaves:

2" > n!
lg(2™) > Ig(n!) (Stirling's approx)
h > (nlgn)

| 16

Today we will make assumptions
I about the input sequence to get
O(n) running time sorts

Comparison sort

This is typically accomplished by
knowing the range of numbers

17 .
Outline

Sorting... again!
-Count sort
-Bucket sort
-Radix sort

| 18

1. Store in an array the number of
I times a number appears
2. Use above to find the last spot
available for the number
3. Start from the last element,
put it in the last spot (using 2.)
decrease last spot array (2.)

Counting sort

22 |
Counting sort

= Input, B= output, C = count
orJ =1 to A.length
CLALJI=ClA[J]]+1
for1 =1 to k (range of numbers)
Cli]=C[i]+CJi=-1]
forj =A.lengthto 1
Bl CLA[]]Il =A[)]
CIA[|[I=CIA[]|]]-1

! 23 |
Counting sort

You try!

K =range =5 (humbers are 2-7)
Sort: {2, 7,4, 3,6, 3, 6, 3}

|24

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3)

1. Find number of times each
number appears
c={1,3,1,0, 2, 1}
2,3,4,5 6,7

25 |
Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3)

2. Change C to find last place of
each element (first index is 1)

C={1,3,1,0,2,1}

{1,4,1,0, 2, 1}

{1,4,5,0,2,141,4,5,5, 7, 1}

{1,4,5,5,2,1{1,4,5,5, 7, 8}

| 26 |
Counting sort

| Sort: {2, 7,4, 3,6, 3, 6, 3}
3. Go start to last, putting each
element Into the last spot avalil.
C={1,4,5,5,7,8} lastinlist =3
2345067
{, ,.,3,,.,,},LC=
123 5678 {1, 3,5,5,7, 8}

27 |
Counting sort

| Sort: {2, 7,4, 3,6, 3, 6, 3}
3. Go start to last, putting each
element Into the last spot avalil.
C={1,4,5,5, 7,8} lastinlist =6
23456067
{, ,.,3, ,.6 },LC
{

12345678 {1,3,5,5,6, 8

28 |
Counting sort

Sort: {2, 7,4, 3,6, 3,6, 3}
12345678 2,3,4,5,0,7
{, , .3, ,,6 }, C={1,3,55,6,8}
{, ,3,3, , ,6, }, C={1,2,5,5,6,8}
{, ,3,3, ,6,6, }, C={1,2,5,5,5,8}
{,3,3,3, ,6,6, }, C={1,1,5,5,5,8}
{,3,3,3,4,6,6, }, C={1,1,4,5,5,8}
{,3,3,3,4,6,6,7}, C={1,1,4,5,5,7}

P29 |
Counting sort

Run time?

! 30 |
Counting sort

Run time?

Loop over C once, A twice

K+ 2n =0(n) as k a constant

1 31 |
Counting sort

Does counting sort work If you
I find the first spot to put a number
In rather than the last spot?

If yes, write an algorithm for this
IN loose pseudo-code

If no, explain why

| 32

Counting sort

Sort: {2, 7,4, 3,6, 3, 6, 3}

c={1,3,10,2,1} ->{1,4,5,5,7,8}
Instead C| 1]| = sum, Cl]]

C'={0,1,4,5,5, 7}
Add from start of original and
increment

33 |
Counting sort

A = Input, B= output, C = count
for] =1 to A.length
CLALJII=C[ALJ]]+1
for1 =2 to k (range of numbers)
Clil=Cli-k11+CJi=-1]
forj =A.lengthto 1
Bl C[A[J]Il =A[)]
CIA[|[I=CIA[]]] + 1

34 .
Counting sort

Counting sort Is stable, which
means the last element in the
order of repeated numbers IS
preserved from input to output

(In example, first ‘3" In original list
IS first ‘3" In sorted list)

35
Bucket sort

1. Group similar items into a
bucket

2. Sort each bucket individually

3. Merge buckets

36
Bucket sort

0-9 10-19 20-29 30-39 40-45

e P e
3 43
9 3711 a9

e e e e e e e e e

3 9 37 43 49

As a human, | recommend this
sort If you have large n

| 37

(specific to fractional numbers)
I (also assumes n buckets for n

numbers)
fori=1ton//n=A.length

Insert Al 1] into Blfloor(n Al 1])+1]
for1=1ton//n=B.length

sort list B[1 | with insertion sort
concatenate B|1] to B|2] to BJ|3]...

Bucket sort

| 38

I Run time”?

Bucket sort

| 39

I Run time”?

Bucket sort

®(n)

Proof is gross... but with n buckets
each bucket will have on average
a constant number of elements

| 40 |
| Radix sort

Use a stable sort to sort from the
I least significant digit to most

Psuedo code: (A=Input)
fori=1tod
stable sort of A on digit |
/[l 1.e. use counting sort

Radix sort

|23 — = 12B

583 54 (2P

154 : / |54

567 : i

689 37

625 . ?

456 J ! f
Tev ot a sorted Sorted Sortec
[nsorted h} lg h:'. 108 h} 100

Stable means you can draw lines
without crossing for a single diqgit

42 .
Radix sort

Run time?

| 43 |
Radix sort

: Run time?

O((b/r) (n+27))

b-bits total, r bits per 'digit’

d = b/r digits

Each count sort takes O(n + 2"
runs count sort d times...

O(d(n+2")) = O(b/r (n + 2"))

| 44 |
Radix sort

: Run time?
If b <lg(n), ®(n)
it b >1g(n), ®(n lg n)

Heapsort
O

L

(17, (16)

2 3

4 - & T
8 o 10 11 12 13

[19]17[16]12] 9 Jis[1 1211l 73 [10]14]
1 2 3 & T

4 5 r B 10 11 12 13

I It IS possible to represent
binary trees as an array

Binary tree as array

A=|16|14|‘IO|8|7|9|3|2|4|‘f|

112|3]4|5/6]7/8]9|10

Binary tree as array

Index 'I' Is the parent of '2I' and
21+1"

14 g
2, 0 (& ©
2 & @

N\ - N\
A=|16f14]10) 8| 79| 3] 2] 4]
112131456789]|10

I IS It possible to represent
any tree with a constant
branching factor as an array?

Binary tree as array

I IS It possible to represent
any tree with a constant
branching factor as an array?

Binary tree as array

Yes, but the notation IS awkward

I A max heap Is a tree where the
parent Is larger than its children
(A min heap Is the opposite)

Heaps

400

Heapsort

The idea behind heapsort is to:

1. Build a heap

2. Pull out the largest (root)
and re-compile the heap

3. (repeat)

Heapsort

To do this, we will define
subroutines:

I
I
I

1. Max-Heapify = maintains heap

property

2. Build-Max-Heap = make
seguence Into a max-heap

I Input: a root of two max-heaps
I Output: a max-heap

Max-Heapify

é%@ o d®do

.................

max hcap

Max-Heapify

Pseudocode Max-Heapity(A,i):

left = left(i) // 2*i

right = right(1) // 2*i+1

L = arg_max(Alleft], A[right], A[1])

if (L not 1)
exchange A[1 | with A L |
Max-Heapity(A, L)

// now make me do it!

Max-Heapify

Runtime?

I Max-Heapity

Obviously (Is it?): Ig n

Runtime?

T(n) =T(2/3 n) + O(1) // why?
Or...
T(n) =T(1/2 n) + O(1)

Master's theorem

I Master's theorem: (proof 4.6)
I Fora>1,b>1,T(n)=aTm/b) + f(n)

If £(n) is... (3 cases)

O(n°) for c <log, a, T(n) is O(n'"=" ?)
®(n'°e*?), then T(n) is G(n'°¢" 2 1g n)
Q(n°) for ¢ > log a, T(n) is O(f(n))

I Max-Heapity

Obviously (Is it?): Ig n

Runtime?

T(n) =T(2/3 n) + O(1) // why?
Or...
T(n) =T(1/2 n) + O(1) = O(lg n)

I Build-Max-Heap

Next we build a full heap from
I an unsorted sequence

Build-Max-Heap(A)
for 1 = floor(A.length/2) to 1
Heapify(A, 1)

I Build-Max-Heap

|
=5 &

o\ [0 0

Red part Is already Heaplified

I Build-Max-Heap

I Correctness:
I Base: Each alone leaf is a
max-heap
Step: If All] to A[n] are In a heap,
then Heapify(A, 1-1) will make
-1 a heap as well
Termination: loop ends at I=1,
which is the root (so all heap)

I Build-Max-Heap

Runtime?

Build-Max-Heap

Runtime?

O(n Ig n) Is obvious, but we can
get a better bound...

Show ceiling(n/2™') nodes at
any height 'h'

Build-Max-Heap
Heapify from height 'nh' takes O(h)

sum,__,9" ceiling(n/2"*) O(h)
=O(n sum__,9" ceiling(h/2"*))
(sum _~ k X = x/(1-x)?, x=1/2)
=0(n 4/2) = O(n)

I Heapsort(A):
I Build-Max-Heap(A)
for 1 = A.length to 2
SwapA| 1] All]
A.heapsize = A.heapsize — 1
Max-Heapify(A, 1)

Heapsort

0 0 0

o — © ® 9
» 6 00 0000

oL~ 0 7 o . o

o O ® o D
00006 0000 oooe 0000

? O 00
” @
1
o o -0 O

Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n Ig n)

Heapsort

Runtime?

Priority queues

Heaps can also be used to
Implement priority gueues
(1.e. alrplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max

and Increase-key

I Maximum/(A):
I return A| 1 |

Priority queues

Extract-Max(A):

max = A[1]

All] = A.heapsize

A.heapsize = A.heapsize — 1
Max-Heapify(A, 1), return max

I Increase-key(A, I, key):
| Ali]=key
while (1>1 and A [floor(i/2)] < AJi])
swap Al 1], A [floor(i/2)]
| = floor(1/2)

Priority queues

Opposite of Max-Heapify... move
high keys up instead of low down

I Insert(A, key):

I A.heapsize = A.heapsize + 1
A [A.heapsize| = -=
Increase-key(A, A.heapsize, key)

Priority queues

Maximum =
Extract-Max =
InCrease-Key =
Insert =

Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)

Priority queues

Runtime?

I Name Average Worst-case

| Insertion[s,i] O(n?) O(n?)
Mergels,p] O(nlilgn) O(nlgn)
Heap|l] O(nlilgn) O(nlgn)
Quick|p] O(nlgn) O(n?9)
Counting[s] O(n+k) O(n + k)
Radix|s] O(d(n+k)) O(d(n+k)
Bucket[s,p] O(n) O(n?)

Sorting comparisons:

Sorting comparisons:

https://www. youtube com/watch?v kPRAOWlkECg

I Quick Sort (LR ptrs) - 454 c , 670 array a , 1.00 ms delay http://panthema.net/2013/sound-of-sorting

g

