
Sorting... more
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Announcements

Homework posted, due next Sunday
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Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?
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Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?
Sort about half, so same as merge
sort on average
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Quicksort

Can bound number of checks against
pivot:  
Let X

i,j
 = event A[i] checked to A[j]

sum
i,j
 X

i,j
 = total number of checks

E[sum
i,j
 X

i,j
]= sum

i,j 
E[X

i,j
]

= sum
i,j
 Pr(A[i] check A[j])

= sum
i,j
 Pr(A[i] or A[j] a pivot)
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Quicksort

= sum
i,j
 Pr(A[i] or A[j] a pivot)

= sum
i,j
 (2 / j-i+1) // j-i+1 possibilties

< sum
i 
O(lg n)

= O(n lg n)
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Quicksort

Correctness:
Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If A[j] < pivot it will be
added to  “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...
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Quicksort
Two cases:
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Quicksort

Which is better for multi core,
quicksort or merge sort?

If the average run times are the same,
why might you choose quicksort?
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Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?
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Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?
Uses less space.
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Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is Θ(n lg n)
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Sorting!

All n! permutations must be leaves

Worst case is tree height
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Sorting!

A binary tree (either < or >) of
height h has 2h leaves:

2h > n!
lg(2h) > lg(n!)   (Stirling's approx)
h > (n lg n)
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Comparison sort

Today we will make assumptions
about the input sequence to get
O(n) running time sorts

This is typically accomplished by
knowing the range of numbers
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Sorting... again!
-Count sort
-Bucket sort
-Radix sort

Outline
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Counting sort

1. Store in an array the number of
times a number appears

2. Use above to find the last spot
available for the number

3. Start from the last element,
put it in the last spot (using 2.)
decrease last spot array (2.)
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Counting sort

A = input, B= output, C = count
for j = 1 to A.length

C[ A[ j ]] = C[ A[ j ]] + 1
for i = 1 to k (range of numbers)

C[ i ] = C[ i ] + C [ i – 1 ]
for j = A.length to 1

B[ C[ A[ j ]]] = A[ j ]
C[ A[ j ]] = C[ A[ j ]] - 1
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Counting sort

You try!

k = range = 5 (numbers are 2-7)
Sort: {2, 7, 4, 3, 6, 3, 6, 3}
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

1. Find number of times each
number appears

C = {1, 3, 1, 0, 2, 1}
        2, 3, 4, 5, 6, 7
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

2. Change C to find last place of
each element (first index is 1)

C = {1, 3, 1, 0, 2, 1}
{1, 4, 1, 0, 2, 1}
{1, 4, 5, 0, 2, 1}{1, 4, 5, 5, 7, 1}
{1, 4, 5, 5, 2, 1}{1, 4, 5, 5, 7, 8}
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each 
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 3
        2  3  4  5  6  7
{ ,   ,  ,3,  ,  ,  ,  }, C = 
 1 2 3 4 5 6 7 8     {1, 3, 5, 5, 7, 8}
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each 
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 6
        2  3  4  5  6  7
{ ,   ,  ,3,  ,  ,6,  }, C = 
 1 2 3 4 5 6 7 8     {1, 3, 5, 5, 6, 8}
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}
 1 2 3 4 5 6 7 8         2,3,4,5,6,7
{ ,   ,  ,3,  ,  ,6,  }, C={1,3,5,5,6,8} 
{ ,   ,3,3,  ,  ,6,  }, C={1,2,5,5,6,8} 
{ ,   ,3,3,  ,6,6,  }, C={1,2,5,5,5,8} 
{ , 3,3,3,  ,6,6,  }, C={1,1,5,5,5,8} 
{ , 3,3,3,4,6,6,  }, C={1,1,4,5,5,8} 
{ , 3,3,3,4,6,6,7}, C={1,1,4,5,5,7}      
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Counting sort

Run time?      
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Counting sort

Run time?

Loop over C once, A twice

k + 2n = O(n) as k a constant      
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Counting sort

Does counting sort work if you
find the first spot to put a number
in rather than the last spot?

If yes, write an algorithm for this 
in loose pseudo-code

If no, explain why
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Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

C = {1,3,1,0,2,1} -> {1,4,5,5,7,8}
instead C[ i ] = sum

j<i
 C[ j ]

C' = {0, 1, 4, 5, 5, 7}
Add from start of original and
increment
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Counting sort

A = input, B= output, C = count
for j = 1 to A.length

C[ A[ j ]] = C[ A[ j ]] + 1
for i = 2 to k (range of numbers)

C'[ i ] = C'[ i-1 ] + C [ i – 1 ]
for j = A.length to 1

B[ C[ A[ j ]]] = A[ j ]
C[ A[ j ]] = C[ A[ j ]] + 1
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Counting sort

Counting sort is stable, which
means the last element in the 
order of repeated numbers is
preserved from input to output

(in example, first '3' in original list
is first '3' in sorted list)
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Bucket sort

1. Group similar items into a
bucket

2. Sort each bucket individually

3. Merge buckets
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Bucket sort

As a human, I recommend this
sort if you have large n

36



Bucket sort

(specific to fractional numbers)
(also assumes n buckets for n
 numbers)
for i = 1 to n // n = A.length

insert A[ i ] into B[floor(n A[ i ])+1]
for i = 1 to n // n = B.length

sort list B[ i ] with insertion sort
concatenate B[1] to B[2] to B[3]...
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Bucket sort

Run time?
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Bucket sort

Run time?

Θ(n)

Proof is gross... but with n buckets
each bucket will have on average
a constant number of elements
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Radix sort

Use a stable sort to sort from the
least significant digit to most

Psuedo code: (A=input)
for i = 1 to d

stable sort of A on digit i 
// i.e. use counting sort
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Radix sort

Stable means you can draw lines
without crossing for a single digit
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Radix sort

Run time?
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Radix sort

Run time?

O( (b/r) (n+2r) )
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2r)
runs count sort d times...
O( d(n+2r)) = O( b/r (n + 2r))
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Radix sort

Run time?

if b < lg(n), Θ(n)
if b > lg(n), Θ(n lg n)
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Heapsort



Binary tree as array

It is possible to represent
binary trees as an array

1|2|3|4|5|6|7|8|9|10



Binary tree as array

index 'i' is the parent of '2i' and 
'2i+1'

1|2|3|4|5|6|7|8|9|10



Binary tree as array

Is it possible to represent 
any tree with a constant
branching factor as an array?



Binary tree as array

Is it possible to represent 
any tree with a constant
branching factor as an array?

Yes, but the notation is awkward



Heaps

A max heap is a tree where the
parent is larger than its children
(A min heap is the opposite)



Heapsort

The idea behind heapsort is to:

1.  Build a heap

2.  Pull out the largest (root)
and re-compile the heap

3.  (repeat)



Heapsort

To do this, we will define 
subroutines:

1. Max-Heapify = maintains heap
property 

2. Build-Max-Heap = make 
sequence into a max-heap



Max-Heapify

Input: a root of two max-heaps
Output: a max-heap



Max-Heapify

Pseudocode Max-Heapify(A,i):
left = left(i)      // 2*i
right = right(i)  // 2*i+1
L = arg_max( A[left], A[right], A[ i ])
if (L not i)

exchange A[ i ] with A[ L ]
Max-Heapify(A, L)

// now make me do it!



Max-Heapify

Runtime?



Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
  Or...
T(n) = T(1/2 n) + O(1)



Master's theorem

Master's theorem: (proof 4.6)
For a > 1, b > 1,T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases)
O(nc) for c < log

b
 a, T(n) is Θ(nlogb a)

Θ(nlogb a), then T(n) is Θ(nlogb a lg n)
Ω(nc) for c > log

b
 a, T(n) is Θ(f(n))



Max-Heapify

Runtime?

Obviously (is it?): lg n

T(n) = T(2/3 n) + O(1) // why?
  Or...
T(n) = T(1/2 n) + O(1) = O(lg n)



Build-Max-Heap

Next we build a full heap from
an unsorted sequence

Build-Max-Heap(A)
for i = floor( A.length/2 ) to 1

Heapify(A, i)



Build-Max-Heap

Red part is already Heapified



Build-Max-Heap

Correctness:
Base:  Each alone leaf is a 

max-heap
Step: if A[i] to A[n] are in a heap,

then Heapify(A, i-1) will make 
i-1 a heap as well

Termination: loop ends at i=1,
which is the root (so all heap)



Build-Max-Heap

Runtime?



Build-Max-Heap

Runtime?

O(n lg n) is obvious, but we can
get a better bound...

Show ceiling(n/2h+1) nodes at
any height 'h'



Build-Max-Heap

Heapify from height 'h' takes O(h)

sum
h=0

lg n ceiling(n/2h+1) O(h)
=O(n sum

h=0
lg n ceiling(h/2h+1))

(sum
x=0

∞ k xk = x/(1-x)2, x=1/2)
=O(n 4/2) = O(n)



Heapsort

Heapsort(A):
Build-Max-Heap(A)
for i = A.length to 2

Swap A[ 1 ], A[ i ]
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1)



Heapsort



Heapsort

Runtime?



Heapsort

Runtime?

Run Max-Heapify O(n) times
So... O(n lg n)



Priority queues

Heaps can also be used to 
implement priority queues
(i.e. airplane boarding lines)

Operations supported are:
Insert, Maximum, Exctract-Max
and Increase-key



Priority queues

Maximum(A):
return A[ 1 ]

Extract-Max(A):
max = A[1]
A[1] = A.heapsize
A.heapsize = A.heapsize – 1
Max-Heapify(A, 1),    return max



Priority queues

Increase-key(A, i, key):
A[ i ] = key
while ( i>1 and A [floor(i/2)] < A[i])

swap A[ i ], A [floor(i/2)]
i = floor(i/2)

Opposite of Max-Heapify... move
high keys up instead of low down



Priority queues

Insert(A, key):
A.heapsize = A.heapsize + 1
A [ A.heapsize] = -∞
Increase-key(A, A.heapsize, key)



Priority queues

Runtime?

Maximum = 
Extract-Max = 
Increase-Key = 
Insert = 



Priority queues

Runtime?

Maximum = O(1)
Extract-Max = O(lg n)
Increase-Key = O(lg n)
Insert = O(lg n)



Sorting comparisons:

Name Average Worst-case
Insertion[s,i] O(n2) O(n2)
Merge[s,p] O(n lg n) O(n lg n)
Heap[i] O(n lg n) O(n lg n)
Quick[p] O(n lg n) O(n2)
Counting[s] O(n + k) O(n + k)
Radix[s] O(d(n+k)) O(d(n+k))
Bucket[s,p] O(n) O(n2)



Sorting comparisons:

https://www.youtube.com/watch?v=kPRA0W1kECg


