
Sorting... more

1



Divide & conquer

Which works better for multi-cores:
insertion sort or merge sort?
Why?

2



Divide & conquer

Which works better for multi-cores:
insertion sort or merge sort?
Why?

Merge sort!  After the problem is 
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized

3



Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger 

4



Quicksort

Pivot

Larger

Smaller

5



Quicksort

Partition(A, start, end)
x = A[end]
i = start – 1
for j = start to end -1

if A[j] < x
i = i + 1
swap A[i] and A[j]

swap A[i+1] with A[end]  

6



Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2}

7



Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2} – Pivot = 2
{4, 5, 3, 8, 1, 6, 2} – sort 4
{4, 5, 3, 8, 1, 6, 2} – sort 5
{4, 5, 3, 8, 1, 6, 2} – sort 3
{4, 5, 3, 8, 1, 6, 2} – sort 8
{4, 5, 3, 8, 1, 6, 2} – sort 1, swap 4
{1, 5, 3, 8, 4, 6, 2} – sort 6
{1, 5, 3, 8, 4, 6, 2},{1, 2, 5, 3, 8, 4, 6}

8



Quicksort

For quicksort, you can pick any
pivot you want

The algorithm is just easier to write
if you pick the last element (or first)

9



Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2} - Pivot = 3
{4, 5, 2, 8, 1, 6, 3} – swap 2 and 3
{4, 5, 2, 8, 1, 6, 3}
{4, 5, 2, 8, 1, 6, 3}
{2, 5, 4, 8, 1, 6, 3} – swap 2 & 4
{2, 5, 4, 8, 1, 6, 3}      (first red ^)
{2, 1, 4, 8, 5, 6, 3} – swap 1 and 5
{2, 1, 4, 8, 5, 6, 3}{2, 1, 3, 8, 5, 6, 4}

10



Quicksort

Runtime:
Worst case?

Average?

11



Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?

12



Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?
Sort about half, so same as merge
sort on average

13



Quicksort

Can bound number of checks against
pivot:  
Let X

i,j
 = event A[i] checked to A[j]

sum
i,j
 X

i,j
 = total number of checks

E[sum
i,j
 X

i,j
]= sum

i,j 
E[X

i,j
]

= sum
i,j
 Pr(A[i] check A[j])

= sum
i,j
 Pr(A[i] or A[j] a pivot)

14



Quicksort

= sum
i,j
 Pr(A[i] or A[j] a pivot)

= sum
i,j
 (2 / j-i+1) // j-i+1 possibilties

< sum
i 
O(lg n)

= O(n lg n)

15



Quicksort

Correctness:
Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If A[j] < pivot it will be
added to  “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

16



Quicksort
Two cases:

17



Quicksort

Which is better for multi core,
quicksort or merge sort?

If the average run times are the same,
why might you choose quicksort?

18



Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?

19



Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?
Uses less space.

20



Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is Θ(n lg n)

21



Comparison sort

All n! permutations must be leaves

Worst case is tree height

24



Comparison sort

A binary tree (either < or >) of
height h has 2h leaves:

2h > n!
lg(2h) > lg(n!)   (Stirling's approx)
h > (n lg n)

25



Comparison sort

Today we will make assumptions
about the input sequence to get
O(n) running time sorts

This is typically accomplished by
knowing the range of numbers

26



Sorting... again!
-Comparison sort
-Count sort
-Radix sort
-Bucket sort

Outline
27



Counting sort

1. Store in an array the number of
times a number appears

2. Use above to find the last spot
available for the number

3. Start from the last element,
put it in the last spot (using 2.)
decrease last spot array (2.)

28



Counting sort

A = input, B= output, C = count
for j = 1 to A.length

C[ A[ j ]] = C[ A[ j ]] + 1
for i = 1 to k (range of numbers)

C[ i ] = C[ i ] + C [ i – 1 ]
for j = A.length to 1

B[ C[ A[ j ]]] = A[ j ]
C[ A[ j ]] = C[ A[ j ]] - 1

32



Counting sort

k = 5 (numbers are 2-7)
Sort: {2, 7, 4, 3, 6, 3, 6, 3}

1. Find number of times each
number appears

C = {1, 3, 1, 0, 2, 1}
        2, 3, 4, 5, 6, 7

33



Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

2. Change C to find last place of
each element (first index is 1)

C = {1, 3, 1, 0, 2, 1}
{1, 4, 1, 0, 2, 1}
{1, 4, 5, 0, 2, 1}{1, 4, 5, 5, 7, 1}
{1, 4, 5, 5, 2, 1}{1, 4, 5, 5, 7, 8}

34



Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each 
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 3
        2  3  4  5  6  7
{ ,   ,  ,3,  ,  ,  ,  }, C = 
 1 2 3 4 5 6 7 8     {1, 3, 5, 5, 7, 8}

35



Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each 
element into the last spot avail.

C = {1, 4, 5, 5, 7, 8}, last in list = 6
        2  3  4  5  6  7
{ ,   ,  ,3,  ,  ,6,  }, C = 
 1 2 3 4 5 6 7 8     {1, 3, 5, 5, 6, 8}

36



Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}
 1 2 3 4 5 6 7 8         2,3,4,5,6,7
{ ,   ,  ,3,  ,  ,6,  }, C={1,3,5,5,6,8} 
{ ,   ,3,3,  ,  ,6,  }, C={1,2,5,5,6,8} 
{ ,   ,3,3,  ,6,6,  }, C={1,2,5,5,5,8} 
{ , 3,3,3,  ,6,6,  }, C={1,1,5,5,5,8} 
{ , 3,3,3,4,6,6,  }, C={1,1,4,5,5,8} 
{ , 3,3,3,4,6,6,7}, C={1,1,4,5,5,7}      

37



Counting sort

Run time?      

38



Counting sort

Run time?

Loop over C once, A twice

k + 2n = O(n) as k a constant      

39



Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

C = {1,3,1,0,2,1} -> {1,4,5,5,7,8}
instead C[ i ] = sum

j<i
 C[ j ]

C' = {0, 1, 4, 5, 5, 7}
Add from start of original and
increment

41



Counting sort

Counting sort is stable, which
means the last element in the 
order of repeated numbers is
preserved from input to output

(in example, first '3' in original list
is first '3' in sorted list)

42



Radix sort

Use a stable sort to sort from the
least significant digit to most

Psuedo code: (A=input)
for i = 1 to d

stable sort of A on digit i

43



Radix sort

Stable means you can draw lines
without crossing for a single digit

44



Radix sort

Run time?

45



Radix sort

Run time?

O( (b/r) (n+2r) )
b-bits total, r bits per 'digit'
d = b/r digits
Each count sort takes O(n + 2r)
runs count sort d times...
O( d(n+2r)) = O( b/r (n + 2r))

46



Radix sort

Run time?

if b < lg(n), Θ(n)
if b > lg(n), Θ(n lg n)

47



Bucket sort

1. Group similar items into a
bucket

2. Sort each bucket individually

3. Merge buckets

48



Bucket sort

As a human, I recommend this
sort if you have large n

49



Bucket sort

(specific to fractional numbers)
(also assumes n buckets for n
 numbers)
for i = 0 to A.length

insert A[ i ] into B[ floor(n A[ i ]) ]
for i = 0 to B.length

sort list B[ i ] with insertion sort
concatenate B[0] to B[1] to B[2]...

50



Bucket sort

Run time?

51



Bucket sort

Run time?

Θ(n)

52


