Sorting... more

CAR

BACKEND

I ALGORITHMS
BY (OMPLEXITY
HDRE CDHPLE?% > | | |
LEFTPAD QUICKSORT G SELF- GOOGLE SPRALILING EXCEL SPREADSHEET
MERGE DRWNG SEARCH BUIT UP OVER 2D YEARS BY A

CHURCH GROUP IN NEBRASKA TO
COORDINATE THEIR SCHEDULING

|2

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

|3

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

Merge sort! After the problem is
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized

4
I Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger

Quicksort

|6

I Partition(A, start, end)
I X = Alend]
1 = start — 1
for j = start to end -1
it A[j] <x
i=1+1
swap Ali] and Alj]
swap Ali+1] with Alend]

Quicksort

7
I Quicksort
Sort: {4, 5, 3,8, 1, 6, 2}

Quicksort

9
I Quicksort

For quicksort, you can pick any
p1vot you want

The algorithm is just easier to write
if you pick the last element (or first)

Quicksort

|1o

=3

3} —swap 2 &4

(first red N)

3} —swap 1 and 5

3}

3112, 1,3, 8, 5,6, 4}

111 |
Quicksort

Runtime:
I Worst case?

Average?

112 |
Quicksort

Runtime:

I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?

113 |
Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average

| 14 |
Quicksort

Can bound number of checks against
pivot:

Let Xi,j = event Ali]| checked to Alj]
sum, ; X, = total number of checks
E[sumLj Xi,j]= SUm, E[Xi,j]

= Sum, Pr(Ali] check Aljl)

= Sum, Pr(Ali] or Alj] a pivot)

|15

= Sum, Pr(Ali] or Alj] a pivot)

Quicksort

I = sum,. (2 /j-1+1) // j-i+1 possibilties
<sum, O(lg n)
= O(n Ig n)

116 |
Quicksort

Correctness:

I Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If Alj] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

| 17 |
Quicksort

1wo Casl@lsaintenance of Loop Invariant (4)

r

I If A[j]> pivot: P ' !

« only increment |

=X > X
If A[j] < pivot: - ’ r
« iis incremented, A[j] = i& = 5
and A[i] are) " ﬁ | r
swapped and then j - :
Is incremented —— : = . -

5252004 Lecture 4 COSC3101A

118 |
Quicksort

Which is better for multi core,
I quicksort or merge sort?

[f the average run times are the same,
why might you choose quicksort?

119 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?

120 |
Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?
Uses less space.

121 |
Sorting!

So far we have been looking at

I comparative sorts (where we only
can compute < or >, but have no
idea on range of numbers)

The minimum running time for this
type of algorithm is ®(n 1g n)

124 |
Comparison sort

All n! permutations must be leaves

(123)]

(13.2)] (3.12) (23.1) (3.2.1)]
Worst case Is tree height

|25

A binary tree (either < or >) of
I height h has 2" leaves:

Comparison sort

2" > n!
lg(2™) > Ig(n!) (Stirling's approx)
h > (nlgn)

|26

Today we will make assumptions
I about the input sequence to get
O(n) running time sorts

Comparison sort

This is typically accomplished by
knowing the range of numbers

|27

I Sorting... again!
-Comparison sort
-Count sort
-Radix sort
-Bucket sort

Outline

|28

1. Store in an array the number of
I times a number appears
2. Use above to find the last spot
available for the number
3. Start from the last element,
put it in the last spot (using 2.)
decrease last spot array (2.)

Counting sort

32 |
Counting sort

= Input, B= output, C = count
I forJ = 1to A.length
CLALJI=ClA[J]]+1
for1 =1 to k (range of numbers)
Cli]=C[i]+CJi=-1]
forj =A.lengthto 1
Bl CLA[]]Il =A[)]
CIA[|[I=CIA[]|]]-1

|33

I k=5 (numbers are 2-7)
| Sort: {2, 7,4, 3,6, 3,6, 3}

Counting sort

1. Find number of times each
number appears
cC={1,3,1,0, 2,1}
2,3,4.5 6,7

|34

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3)

2. Change C to find last place of
each element (first index is 1)

C={1,3,1,0,2,1}

{1,4,1,0, 2, 1}

{1,4,5,0,2,141,4,5,5, 7, 1}

{1,4,5,5,2,1{1,4,5,5, 7, 8}

|35

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each
element Into the last spot avalil.
C={1,4,5,5,7,8} lastinlist =3

2345067
{, ,.,3,,.,,},LC=
123 5678 {1, 3,5,5,7, 8}

|36

Counting sort

Sort: {2, 7, 4, 3, 6, 3, 6, 3}

3. Go start to last, putting each
element Into the last spot avalil.
C={1,4,5,5, 7,8} lastinlist =6

23456067
{, ,.,3, ,.6 },LC
{

12345678 {1,3,5,5,6, 8

|37

Counting sort

Sort: {2, 7,4, 3,6, 3,6, 3}
12345678 2,3,4,5,0,7
{, , .3, ,,6 }, C={1,3,55,6,8}
{, ,3,3, , ,6, }, C={1,2,5,5,6,8}
{, ,3,3, ,6,6, }, C={1,2,5,5,5,8}
{,3,3,3, ,6,6, }, C={1,1,5,5,5,8}
{,3,3,3,4,6,6, }, C={1,1,4,5,5,8}
{,3,3,3,4,6,6,7}, C={1,1,4,5,5,7}

138 |
Counting sort

Run time?

139 |
Counting sort

Run time?

Loop over C once, A twice

K+ 2n =0(n) as k a constant

|41

Counting sort

Sort: {2, 7,4, 3,6, 3, 6, 3}

c={1,3,10,2,1} ->{1,4,5,5,7,8}
Instead C| 1]| = sum, Cl]]

C'={0,1,4,5,5, 7}
Add from start of original and
increment

42 |
Counting sort

Counting sort Is stable, which
means the last element in the
order of repeated numbers IS
preserved from input to output

(In example, first ‘3" In original list
IS first ‘3" In sorted list)

|43

I Use a stable sort to sort from the
I least significant digit to most

Radix sort

Psuedo code: (A=Input)
fori=1tod
stable sort of A on digit |

|44

Radix sort

|23 — = 12B

583 54 (2P

154 : / |54

567 : i

689 37

625 . ?

456 J ! f
Tev ot a sorted Sorted Sortec
[nsorted h} lg h:'. 108 h} 100

Stable means you can draw lines
without crossing for a single diqgit

|45

I Run time?

Radix sort

|46

O((b/r) (n+2"))

b-bits total, r bits per 'digit’

d = b/r digits

Each count sort takes O(n + 2"
runs count sort d times...

O(d(n+2")) = O(b/r (n +2")

Radix sort

Run time?

|47

If b <lg(n), ®(n)
it b >1g(n), ®(n lg n)

Radix sort

Run time?

|48

I 1. Group similar items into a
bucket

Bucket sort

2. Sort each bucket individually

3. Merge buckets

|49

I 0-9 10-19 20-29 30-39 40-45

Bucket sort

< A~ A=

3 43
9 3711 49
i e T
3 9 37 43 49

As a human, | recommend this
sort If you have large n

|50

(specific to fractional numbers)
I (also assumes n buckets for n

numbers)
for 1 = 0 to A.length

iInsert Al 1] into B[floor(n Al 1])]
for 1 = 0 to B.length

sort list B[1 | with insertion sort
concatenate B[0] to B[1] to B[2]...

Bucket sort

|51

I Run time?

Bucket sort

|52

I Run time?

Bucket sort

B(n)

