Sorting

THE SORTING SYSTEM

Because a school establishing cliques doesn't cause any problems.

I Merge sort

I 1. Split pile in half

2. Sort each half (possibly
recursively with merge sort)

3. Recombine lists

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
,é:”// divide

3|8 |6 |1

TS

712

' recursively sort

355

B

\\‘:k merge

,z/

-EIS‘LI

S| 6

7

8]

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
,é:”// divide

3|8 |6 |1

TS

712

' recursively sort

355

B

\\‘:k merge

,z/

-EIS‘LI

S| 6

7

8]

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I

,é:”'/’ divide “\&
3(8[6]1 7254}
. recursively sort
W W
1[3]6[8 4 5(7 |
I ge =

3458?8

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
,é:"// divide \\:\

3|8 |6 |1 ?254|

recursively sort

v v

: 68 D 5 EI
\ merge =
1[2]3[a[5]6][7 E-J

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
,é:"// divide \\:\

816 |1 f12|95

recursively sort

v xir

L

\“:aﬁnge/ﬁ//

1 3 S |6 |7 |8

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I

P

8|6

1

W

recursively sort

[e]e

~

divide \\&

>

254|

v

2

4?

merge /

|1 ‘2'3‘4-E|?‘EI

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
‘z,/"' divide \\&

816 |1 ?254|

| |
: recursively sort !

W W

Te]e T[]

! \EISH\E—

Merge sort

|3‘E|E‘1‘?‘E‘5‘4I
‘z,/"' divide \\SL

816 |1 ?254|

| |
' recursively sort '

W W

35 2[4 [5][7

~a merge »‘ZA//
|1‘2|3‘4 S ﬁ

Merge sort

|
' recursively sort '

35 2]4[5][7|

SN meroe—~—

|1‘2|3‘4 5‘8 ‘E

C—

I Merge sort

I Merge(L[1, ..., n], R[1, ..., n
I i=1, j=1, k=1
whilei<n ORj<n
if L[i] < R[j]
Alk] = L[i], i=i+1
else
Alk] =Rljl, j=j+1
k = k+1

]

r

I Merge sort
Sort: {4, 5, 3,8, 1, 6, 2}

I Sort: {4, 5, 3,8, 1, 6, 2} - Split

| (4,5,3}{8, 1, 6, 2} - Split
{4, 5}{3}{8,1}{6,2} — Split
{4}{5}{3}{8}{1}{6}{2} — Merge
{4, 5}{3} {1, 8} {2, 6} — Merge
{3,4,5} {1, 2, 6,8} — Merge
{1, 2, 3,4,5, 6, 8}

Merge sort

I Merge sort

Corectness:

I Base: Al | empty (sorted), at L&R][1]
Step: In the while loop, the smallest
element in L[] or R|] will be added
as the largest element in Al
Termination: while loop end after
all elements in L[| and R| | have
been added to A}

I Merge sort

Run time:

| T(n) =

I Merge sort

Run time: (recurrence relation)
I T(n) = {O(1) if n=1, otherwise...
Divide + 2T (n/2) + Merge}

T(n) = {O(1) if n=1, otherwise...
O(1) + 2T(n/2) + O(n)}

T(n) = O(n Ig n)

Divide & conquer

I Master's theorem: (proof 4.6)
I Fora>1,b>1,T(n)=aTm/b) + f(n)

If £(n) is... (3 cases)

O(n°) for c <log, a, T(n) is O(n'"=" ?)
®(n'°e*?), then T(n) is G(n'°¢" 2 1g n)
Q(n°) for ¢ > log a, T(n) is O(f(n))

I Master's theorem: TL;DR

I If you have something of the form:
| T(n) = a T(/b) + f(n)
“acts like nlog>2

Case 1: f(n) grows faster, then
overall growth just f(n)
Case 2: n'°s*? grows faster, then
overall growth just n'oe"@
Case 3: Both grow same, tack on Ig n:
nlogb a lg(n)

I What are the running times of...
| (1) T(n) = 4T(0/2) + 02

Master's theorem

(2) T(n) = 4T(n/4) + n?

(3) T(n) = 8T(n/2) + n*

I What are the running times of...
| (1) T(n) = 4T(0/2) + 02
O(n” Ig(n))
(2) T(n) = 4T(n/4) + n?
O(n?)
(3) T(n) = 8T(n/2) + n-
O(n’)

Master's theorem

Master's theorem

Important note on “significantly”:
must grow a power larger

3 — «

n° vs. n 51gn1f1cant
n° vs. n="% = “significant”

n° vs. n° Ig(n) = NOT “significant”

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

Merge sort! After the problem is
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized

I Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger

Quicksort

I Partition(A, start, end)
I X = Alend]
1 = start — 1
for j = start to end -1
it A[j] <x
i=1+1
swap Ali] and Alj]
swap Ali+1] with Alend]

Quicksort

I Quicksort
Sort: {4, 5, 3,8, 1, 6, 2}

Quicksort

rt: {4, 5, 3,8, 1, 6,2} —Pivot =2
, 6,2} —sort4
. 6,2} —sorth
, 6,2} —sort 3
, 6,2} —sort 8

\o

\o
\o

\o

\o
\o

\o
\o

N atnNataNete NateNate et 2
— —_ KA B BB KSO
U1l U1 U1 U1 U1 U1 Ul
W W W W W W W
co 0o OO0 OO 0o QO OO
N N N i el e

\o

Quicksort

For quicksort, you can pick any
p1vot you want

The algorithm is just easier to write
if you pick the last element (or first)

3

Tt
o
Il =
Va
o pumy
s O
N Y
o
It
m o |
~
O M
ol [o\
&

3} —swap 2 &4

(first red N)

3} —swap 1 and 5

3}

3112, 1,3, 8, 5,6, 4}

I Quicksort

Correctness:

I Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If Alj] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

I Quicksort

Runtime:
I Worst case?

Average?

I Quicksort

Runtime:

I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?

I Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average

I Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average

Quicksort

Can bound number of checks against
pivot:

Let Xi,j = event Ali]| checked to Alj]
sum, ; X, = total number of checks
E[sumLj Xi,j]= SUm, E[Xi,j]

= Sum, Pr(Ali] check Aljl)

= Sum, Pr(Ali] or Alj] a pivot)

I Quicksort
= Sum, Pr(Ali] or Alj] a pivot)

I = sum,. (2 /j-1+1) // j-i+1 possibilties
<sum, O(lg n)
= O(n Ig n)

Quicksort

Which is better for multi core,
I quicksort or merge sort?

[f the average run times are the same,
why might you choose quicksort?

Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?

Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?
Uses less space.

Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no

idea on range of numbers)

The minimum running time for this
type of algorithm is ®(n 1g n)

