Sorting

THE SORTING SYSTEM

Because a school establishing cliques doesn't cause any problems.




I Merge sort

I 1. Split pile in half

2. Sort each half (possibly
recursively with merge sort)

3. Recombine lists
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I Merge sort

I Merge(L[1, ..., n ], R[1, ..., n
I i=1, j=1, k=1
whilei<n ORj<n
if L[i] < R[j]
Alk] = L[i], i=i+1
else
Alk] =Rljl, j=j+1
k = k+1

]

r




I Merge sort
Sort: {4, 5, 3,8, 1, 6, 2}



I Sort: {4, 5, 3,8, 1, 6, 2} - Split

| (4,5,3}{8, 1, 6, 2} - Split
{4, 5}{3}{8,1}{6,2} — Split
{4}{5}{3}{8}{1}{6}{2} — Merge
{4, 5}{3} {1, 8} {2, 6} — Merge
{3,4,5} {1, 2, 6,8} — Merge
{1, 2, 3,4,5, 6, 8}

Merge sort



I Merge sort

Corectness:

I Base: Al | empty (sorted), at L&R][1]
Step: In the while loop, the smallest
element in L[] or R| ] will be added
as the largest element in Al
Termination: while loop end after
all elements in L[| and R| | have
been added to A}



I Merge sort

Run time:

| T(n) =



I Merge sort

Run time: (recurrence relation)
I T(n) = {O(1) if n=1, otherwise...
Divide + 2T (n/2) + Merge}

T(n) = {O(1) if n=1, otherwise...
O(1) + 2T(n/2) + O(n)}

T(n) = O(n Ig n)



Divide & conquer

I Master's theorem: (proof 4.6)
I Fora>1,b>1,T(n)=aTm/b) + f(n)

If £(n) is... (3 cases)

O(n°) for c <log, a, T(n) is O(n'"=" ?)
®(n'°e*?), then T(n) is G(n'°¢" 2 1g n)
Q(n°) for ¢ > log a, T(n) is O(f(n))



I Master's theorem: TL;DR

I If you have something of the form:
| T(n) = a T(/b) + f(n)
“acts like nlog>2

Case 1: f(n) grows faster, then
overall growth just f(n)
Case 2: n'°s*? grows faster, then
overall growth just n'oe"@
Case 3: Both grow same, tack on Ig n:
nlogb a lg(n)



I What are the running times of...
| (1) T(n) = 4T(0/2) + 02

Master's theorem

(2) T(n) = 4T(n/4) + n?

(3) T(n) = 8T(n/2) + n*



I What are the running times of...
| (1) T(n) = 4T(0/2) + 02
O(n” Ig(n))
(2) T(n) = 4T(n/4) + n?
O(n?)
(3) T(n) = 8T(n/2) + n-
O(n’)

Master's theorem




Master's theorem

Important note on “significantly”:
must grow a power larger

3 — «

n° vs. n 51gn1f1cant
n° vs. n="% = “significant”

n° vs. n° Ig(n) = NOT “significant”



Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer



Which works better for multi-cores:

I insertion sort or merge sort?
Why?

Divide & conquer

Merge sort! After the problem is
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized



I Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger



Quicksort




I Partition(A, start, end)
I X = Alend]
1 = start — 1
for j = start to end -1
it A[j] <x
i=1+1
swap Ali] and Alj]
swap Ali+1] with Alend]

Quicksort




I Quicksort
Sort: {4, 5, 3,8, 1, 6, 2}



Quicksort
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Quicksort

For quicksort, you can pick any
p1vot you want

The algorithm is just easier to write
if you pick the last element (or first)
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I Quicksort

Correctness:

I Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If Alj] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...



I Quicksort

Runtime:
I Worst case?

Average?
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sort on average



I Quicksort

Runtime;:
I Worst case?
Always pick lowest/highest element,

so O(n?)

Average?
Sort about half, so same as merge
sort on average



Quicksort

Can bound number of checks against
pivot:

Let Xi,j = event Ali]| checked to Alj]
sum, ; X, = total number of checks
E[sumLj Xi,j]= SUm, E[Xi,j]

= Sum, Pr(Ali] check Aljl)

= Sum, Pr(Ali] or Alj] a pivot)



I Quicksort
= Sum, Pr(Ali] or Alj] a pivot)

I = sum,. (2 /j-1+1) // j-i+1 possibilties
<sum, O(lg n)
= O(n Ig n)



Quicksort

Which is better for multi core,
I quicksort or merge sort?

[f the average run times are the same,
why might you choose quicksort?
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Quicksort

Which is better for multi core,

I quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

[f the average run times are the same,
why might you choose quicksort?
Uses less space.



Sorting!

So far we have been looking at
comparative sorts (where we only
can compute < or >, but have no

idea on range of numbers)

The minimum running time for this
type of algorithm is ®(n 1g n)



