
Sorting

Recurrence relationships

3. F
i
 = F

i-1
 + F

i-2
, with f

0
=0 and f

1
=1

- F
0
=0, F

1
=1, F

2
=1, F

3
=2, F

4
=3

- F
0
=5, F

1
=8, F

2
=13, F

3
=21, F

4
=34

- Fi =

[(1+sqrt(5))i–(1-sqrt(5))i]/(2isqrt(5))

Sorting!
-What's a sorting algorithm?
-Insertion sort
-Merge sort
-Divide & conquer (Master's thm)
-Quicksort

Outline

Sorting problem

Input: sequence of numbers =
{a

1
, a

2
, … a

n
}

Output: different order =
{a

1
', a

2
', … a

n
'}, where

a
1
' < a

2
' < … < a

n
'

Insertion sort

General idea:
 -Examine one element at a time

 -Insert into correct place in an
already sorted sequence

-Repeat...

Insertion sort

Where to put a 10 of spades?
A 6 of hearts?

Insertion sort

Where to put a 10 of spades?
A 6 of hearts? Between 5 and 7

Insertion sort

Input: A[1,2, ... n]
for j = 2 to n

i=j-1
key = A[j] // why do we need this?
while i > 0 AND A[i] > key

A[i+1] = A[i]
i = i – 1

A[i+1] = key

Insertion sort

Sort: {4, 5, 3, 8, 1, 6, 2}

Insertion sort

Sort: {4, 5, 3, 8, 1, 6, 2}
{4} - done
{4, 5} – done
{4, 5, 3}, {4,3,5}, {3,4,5} – done
{3, 4, 5, 8} – done
{3, 4, 5, 8, 1}, {3, 4, 5, 1, 8},
{3, 4, 1, 5, 8}, {3, 1, 4, 5, 8},
{1, 3, 4, 5, 8} - done

Insertion sort

Sort: {4, 5, 3, 8, 1, 6, 2}
{1, 3, 4, 5, 8} – done
{1, 3, 4, 5, 8, 6}, {1, 3, 4, 5, 6, 8}
-done
{1, 3, 4, 5, 6, 8, 2},{1, 3, 4, 5, 6, 2, 8}
{1, 3, 4, 5, 2, 6, 8},{1, 3, 4, 2, 5, 6, 8}
{1, 3, 2, 4, 5, 6, 8},{1, 2, 3, 4, 5, 6, 8}
-done and done

Insertion sort

Worst case runtime?

Average case?

Insertion sort

Worst case runtime?
Outer loop runs n times and inner
loop runs j-1 times
1+2+3+ ... + n-1 = ?

Average case?

Insertion sort

Worst case runtime?
Outer loop runs n times and inner
loop runs j-1 times
1+2+3+ ... + n-1 = n(n-1)/2 = O(n2)

Average case?
inner loop (j-1)/2 times = O(n2)

Insertion sort

Correctness:
Base: Initial list is 1 element, sorted
Step: Inner loop places everything
bigger than key after it and
everything smaller before. Before &
after will be sorted as it started sorted
Termination: Terminates after n A[n]
placed, so whole list sorted

Merge sort

1. Split pile in half

2. Sort each half (possibly
recursively with merge sort)

3. Recombine lists

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge sort

Merge(L[1, ..., n
l
], R[1, ..., n

r
]

i=1, j=1, k=1
while i < n

l
 OR j < n

r

if L[i] < R[j]
A[k] = L[i], i=i+1

else
A[k] = R[j], j=j+1

k = k+1

Merge sort

Sort: {4, 5, 3, 8, 1, 6, 2}

Merge sort

Sort: {4, 5, 3, 8, 1, 6, 2} - Split
{4, 5, 3}{8, 1, 6, 2} - Split
{4, 5}{3}{8,1}{6,2} – Split
{4}{5}{3}{8}{1}{6}{2} – Merge
{4, 5}{3} {1, 8} {2, 6} – Merge
{3, 4, 5} {1, 2, 6, 8} – Merge
{1, 2, 3, 4, 5, 6, 8}

Merge sort

Corectness:
Base: A[] empty (sorted), at L&R[1]
Step: In the while loop, the smallest
element in L[] or R[] will be added
as the largest element in A[]
Termination: while loop end after
all elements in L[] and R[] have
been added

Merge sort

Run time:
T(n) =

Merge sort

Run time: (recurrence relation)
T(n) = {O(1) if n=1, otherwise...
 Divide + 2T(n/2) + Merge}

T(n) = {O(1) if n=1, otherwise...
 O(1) + 2T(n/2) + O(n)}

T(n) = O(n lg n)

Divide & conquer

Master's theorem: (proof 4.6)
For a > 1, b > 1,T(n) = a T(n/b) + f(n)

If f(n) is... (3 cases)
O(nc) for c < log

b
 a, T(n) is Θ(nlogb a)

Θ(nlogb a), then T(n) is Θ(nlogb a lg n)
Ω(nc) for c > log

b
 a, T(n) is Θ(f(n))

Master's theorem: TL;DR

If you have something of the form:
T(n) = a T(n/b) + f(n)

acts like nlogb a

Case 1: f(n) grows faster, then
overall growth just f(n)

Case 2: nlogb a grows faster, then
overall growth just nlogb a

Case 3: Both grow same, tack on lg n:
nlogb a lg(n)

Divide & conquer

Which works better for multi-cores:
insertion sort or merge sort?
Why?

Divide & conquer

Which works better for multi-cores:
insertion sort or merge sort?
Why?

Merge sort! After the problem is
split, each core and individually
sort a sub-list and only merging
needs to be done synchronized

Quicksort

1. Pick a pivot (any element!)

2. Sort the list into 3 parts:
- Elements smaller than pivot
- Pivot by itself
- Elements larger than pivot

3. Recursively sort smaller & larger

Quicksort

Pivot

Larger

Smaller

Quicksort

Partition(A, pivot)
x = A[pivot]
i = A.start – 1
for j = A.start to A.end -1

if A[j] < x
i = i + 1
swap A[i] and A[j]

swap A[i+1] with A[r]

Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2}

Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2} – Pivot = 2
{4, 5, 3, 8, 1, 6, 2} – sort 4
{4, 5, 3, 8, 1, 6, 2} – sort 5
{4, 5, 3, 8, 1, 6, 2} – sort 3
{4, 5, 3, 8, 1, 6, 2} – sort 8
{4, 5, 3, 8, 1, 6, 2} – sort 1, swap 4
{1, 5, 3, 8, 4, 6, 2} – sort 6
{1, 5, 3, 8, 4, 6, 2},{1, 2, 5, 3, 8, 4, 6}

Quicksort

For quicksort, you can pick any
pivot you want

The algorithm is just easier to write
if you pick the last element (or first)

Quicksort

Sort: {4, 5, 3, 8, 1, 6, 2} - Pivot = 3
{4, 5, 2, 8, 1, 6, 3} – swap 2 and 3
{4, 5, 2, 8, 1, 6, 3}
{4, 5, 2, 8, 1, 6, 3}
{2, 5, 4, 8, 1, 6, 3} – swap 2 & 4
{2, 5, 4, 8, 1, 6, 3} (first red ^)
{2, 1, 4, 8, 5, 6, 3} – swap 1 and 5
{2, 1, 4, 8, 5, 6, 3}{2, 1, 3, 8, 5, 6, 4}

Quicksort

Correctness:
Base: Initially no elements are in the
“smaller” or “larger” category
Step (loop): If A[j] < pivot it will be
added to “smaller” and “smaller”
will claim next spot, otherwise it
it stays put and claims a “larger” spot
Termination: Loop on all elements...

Quicksort

Runtime:
Worst case?

Average?

Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?

Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?
Sort about half, so same as merge
sort on average

Quicksort

Runtime:
Worst case?
Always pick lowest/highest element,
so O(n2)

Average?
Sort about half, so same as merge
sort on average

Quicksort

Can bound number of checks against
pivot:
Let X

i,j
 = event A[i] checked to A[j]

sum
i,j
 X

i,j
 = total number of checks

E[sum
i,j
 X

i,j
]= sum

i,j
E[X

i,j
]

= sum
i,j
 Pr(A[i] check A[j])

= sum
i,j
 Pr(A[i] or A[j] a pivot)

Quicksort

= sum
i,j
 Pr(A[i] or A[j] a pivot)

= sum
i,j
 (2 / j-i+1) // j-i+1 possibilties

< sum
i
O(lg n)

= O(n lg n)

Quicksort

Which is better for multi core,
quicksort or merge sort?

If the average run times are the same,
why might you choose quicksort?

Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?

Quicksort

Which is better for multi core,
quicksort or merge sort?
Neither, quicksort front ends the
processing, merge back ends

If the average run times are the same,
why might you choose quicksort?
Uses less space.

Sorting!

So far we have been looking at
comparative sorts (where we have to
compare the numbers)

The minimum running time for this
type of algorithm is Θ(n lg n)

