Welcome to CSci 4041

Algorithms and Data Structures

Hepeated X times

Selection - Expansion - Simulation = Backpropagation

§

~, T
II-- H-\.__,.ll.l- L."‘D

Figure from Chaslot {2006)

Instructor (me)

James Parker
Shepherd Labs 391

Primary contact:
jparker@cs.umn.edu

mailto:jparker@cs.umn.edu

I Teaching Assistant

I Pariya Babaie, Jayant Gupta,
Song Liu, Anoop Shukla,

Nikolaos Stetfas, Kshitij Tayal
__\1t1n Varyani

I Textbook
|
I Introduction to o |

Algorithms,
Cormen et al.,

3" edition

ALGORITHMS

Discussion sections

These will typically reinforce the
topics of the week (or exam review)

The TAs may do exercises, SO
bring something to write on
(these exercises will not be graded)

Class website

www.cs.umn.edu/academics/classes
Or google “umn.edu csci class”

Syllabus, schedule, other goodies

Moodle page will have grades and
Possibly homework submission

http://www.cs.umn.edu/academics/classes

www.cs.umn.edu

¥ CSci 404 1H: Announcements - Mozilla Firefox M= E
File Edit Mew Higtory Bookmarks Tools Help

T C 2% I M | hitp:/ Awww-users.ceelabs umn edu/classes/Fall-2015/cecid04 1HS T I =| Google pe
Campuses: Twin Cities Crookston Duluth Morris Rochester Other Locations
M UNIVERSITY OF MINNESOTA myu > OneStop
H Driven to Discover* Search U of M Web Sites Search
COLLEGE OF
Science ineermg CSE Home CSE Directory = Give to CSE = Student Dashboard
Home g »
Offics Hours CSci 4041H: Algorithms and Data Structures
Schedulz Class Announcements
Syllabus
Moodle {grades) « (9/08/2015
ALL YOUR BASE ARE BELONG TO US.
& 2015 Regents of the University of Minnesota. All rights reserved. Twin Cities Campus: Parking & Transportation Maps & Directions
The University of Minnesota is an equal eppertunity educator and employer Directories ContactU of M Privacy

Lazt modified on September & 2015

X Fir'ld:l Mext Previous & Highlight all [~ Match case

Done @

Syllabus

30% Homework

20% Programming assignments
25% Midterm (Oct. 23)

25% Final (Dec. 18)

(No late homework; must ask for
extension 48hr before deadline)

Programming vote

C/C++7?

Java?

Python?

I Syllabus

I Grading scale:
93% A
90% A-
87% B+
83% B
80% B-

77% C+
73% C
70% C-
67% D+
60% D
Below F

Schedule

Ch. 1, 2, 3: Introduction

Ch. 2.1, 2.3, 7, 8: Sequences and Sets

Ch. 6,9, 13, 32: More Sequences and Sets
Ch. 22, 23, 24, 25, 26: Graph Algorithms
Ch. 33: Geometric Algorithms

Ch. 4.2, 30, 31: Algebraic and Numeric Alg.
Ch. 34: NP-Completeness

I Syllabus

I Any questions?

I Major topics:
- Learn lots of algorithms
- Decide which algorithm is
most appropriate
- Find asymptotic runtime
and prove an algorithm works
(mathy)

Course overview

I We assume you can program

Algorithms

This class focuses on improving
your ability to make code run faster
by picking the correct algorithm

This is a crucial skill for large code

Algorithms

I We will do a pretty thorough job

I of sorting algorithms

After that we will touch interesting
or important algorithms

The goal is to expose you to a wide
range of ways to solve problems

Algorithms

Quite often there is not a single
I algorithm that always performs best

Most of the time there are trade-offs:
some algorithms are fast,

some use more/less memory,

some take use parallel computing...

I Algorithms

A major point of this class is to tell
I how scalable algorithms are

[f you have a 2MB input text file
and your program runs in 2 min
... what if you input a S5SMB file?

... 20 MB file?

Algorithms

In addition to using math to find the
speed of algorithms, we will prove
algorithms correctly find the answer

This is called the “correctness” of
an algorithm (and often will be
proof-by-induction)

Introduction / Review

m
X
©
®
=i
3
)
S
-+

Algorithms |

I Number of transistors double every
two years

Moore's .aw

This trend has slowed a bit,
closer to doubling every 2.5 years

I First computer
I Lz

Memory: |
° \'} -'-n;"i'[| '
$ 4 2/
3’ = :.;' . i :
1 MB ¥ 4 /

3500

3000

2500

2000

1500

1000

500

Stock Clock Speed

_I)‘.SEBD

3330
3330
3200 200

2930

2530

2200

1800

300
200

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

CPU trends

10,000,000
Dual-Core Itanium 2 =]
1,000,000 :
- []
Intel CPU Trends [
(sources: Intel, Wikipedia, K. Olukotun) -
100,000
Pentium 4
p=)
10,000 |
1,000
100
10
= o
1 L | : | Transistors (0O0)
P - @ Clock Speed (MHZ)
A Power (W)
@ Perf fClock (ILP)
o |

1970 1975 1980 1985 1990 1595 2000 2005 2010

Intel Processor Clock Speed (MHz)

Pentium4 Prescott

Core 2 Extreme

Pentium I1I \]
|
Celeron Multicore Crisis
isHere!

Pentium

1984 1990 1995 2001 2006

1000

100

Watts/cm?

10

CPU trends

Surface of the Sun

Rocket Nozzle

F
Nuclear Reactor
Ig

-

td
i

Intel Pentium |l ~<—

Hot Plate
Intel Peantium Pro

et Pentium <] 003

Intel i486

1.5 10.7 0.5

Minumum IC Feature size
in microns

Intel Pentium 4 2 0 O O
In:l Pentium I m 9

1996
1995

0.35 0.250.18 0.13 0.1 0.07

Parallel processing (cooking)

You and your siblings are going to make dinner

1 H E

How would all three of you make... :
(1) turkey?
(2) a salad?

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make turkey....

take
out

Parallel processing (cooking)

If you make turkey....

Parallel processing (cooking)

If you make a salad...

Parallel processing (cooking)

If you make a salad...

Parallel processing (cooking)

If you make a salad...

dun}) together

ii-
t’w . ’)
- § y J’é;';"‘ it AN

. Ju—— !
. 2 | Al ol o A b y
4 b - -
i he e \ = 3 h’ -
P b 1 5 X i A
L 4 i '-. T A
- -~ 3 =,

Parallel processing (cooking)

To make use of last 15 years of technology,
need to have algorithms like salad

Multiple cooks need to work at the same
time to create the end result

Computers these days have 4-8 “cooks”
in them, so try not to make turkey

Correctness

An algorithm Is correct If it takes

an Input and always halts with the
correct output.

Many hard problems there Is no
known correct algorithm and inste
approximate algorithms are used

I What does O(n¢) mean?

Asymptotic growth

B(n?)?

Q(n?)?

I If our algorithm runs in f(n) time,

then our algorithm is O(g(n))
means there is an n, and c such that

0<f(n)<cg(n)foralln>n

cg(n)
P

—— - O(g(n)) can be used for

P
LN

T more than run time

Asymptotic growth

f(n)=0O(g(n)) means that for large
I inputs (n), g(n) will not grow
slower than f(n)

Asymptotic growth

n = 0O(n?)?
n=0(n)?
n° = 0O(n)?

Asymptotic growth

f(n)=0(g(n)) gives an upper bound
for the growth of f(n)

f(n)=C(g(n)) gives a lower bound
for the growth of f(n), namely:
there is an n, and c such that

0<cgn)<f(n)foralln>n

Asymptotic growth

f(n)=0O(g(n)) is defined as:
there is ann , ¢, and c, such that

0<c, g(n)<f(n)<c, g(n) forall

n Z nO cg(n)
flrn)

| n l
0 Am=0(g(n) Mo fin)=O(g(n))

Asymptotic growth

Suppose f(n) = 2n°—5n + 7

| Show f(n) = O(n?):
we need to find 'c' and 'n' so that
cn®>2n°—5n + 7, guess c=3
3n°>2n“—5n+7
n°>-5n+7
n > 2, so c=3 and n =2 proves this

I Asymptotic growth

Suppose f(n) = 2n°—5n + 7
I Show f(n) = Q(n?):

For any general f(n) show:
f(n)=0(g(n)) if and only if
f(n)=0(g(n)) and {(n)=C2(g(n))

Asymptotic growth

Suppose f(n) = 2n°—5n + 7

Show f(n) = Q(n?):

again we find a 'c' and 'n;’

cn® < 2n“—5n + 7, guess c=1
In“<2n°—>5n+7

0 <n’-5n+7, orn?>5n-7

n >4, so c=1 and n =4 proves this

I f(n)=0O(g(n)) implies
| n)=0(g(n) and f(m)=0(g(n))

by definition we have 'c ', 'c/, 'n ' so
0<c, g(n)<f(n) <c, g(n) after n_
0 <c, g(n) <1t(n) atter n, is Q(g(n))

0 <1(n) <c, g(n) after n, is O(g(n))

Asymptotic growth

I Asymptotic growth

I f(n)=0(g(n)) and £(n)=C2(g(n))

| implies f(n)=0(g(n)):
by definition we havec,c,n , n,
Q(g(n)) is 0 <c, g(n) < f(n) after n_
O(g(n)) is 0 <f(n) < c, g(n) after n_
0<c, g(n) <f(n)<c, g(n) atter

max(n,,n)

Asymptotic growth

There are also o(g(n)) and w(g(n))
but are rarely used

f(n)=o(g(n)) means for any c there
isann,: 0 <f(n) <cg(n) after n

lim(n—o) f(n)/g(n) =20
w(g(n)) is the opposite of o(g(n))

Asymptotic growth

Big-O notation is used very
frequently to describe run time of
algorithms

It is fairly common to use big-O
to bound the worst case and
provide empirical evaluation of
runtime with data

Asymptotic growth

What is the running time of the
following algorithms for n people:
1. Does anyone share my birthday?
2. Does any two people share a
birthday?

3. Does any two people share a
birthday (but I can only remember
and ask one date at a time)?

Asymptotic growth

1. O(n) or justn

2. O(n) or just n for small n
(https://en.wikipedia.org/wiki/Birth
day_problem)

Worst case: 365 (technically 366)
Average run time: 24.61659

3. O(n?) or n?

Math review

Monotonically increasing means:
for all m < n implies f(m) < f(n)

Math review

Monotonically decreasing means:
for all m < n implies f(m) > f(n)

Strictly increasing means:
for all m < n implies f(m) < f(n)

In proving it might be useful to use
monotonicity of f(n) or d/dn f(n)

Math review

floor/ceiling?

modulus?

exponential rules and definition?
logs?

factorials?

I floor is “round down”
I floor(8/3) = 2

Floors and ceilings

ceiling is “round up”
ceiling(8/3) = 3
(both are monotonically increasing)

Prove: tloor(n/2) + ceiling(n/2) = n

Floors and ceilings

Prove: floor(n/2) + ceiling(n/2) = n
Case: nis even, n = 2k

floor(2k/2) + ceiling(2k/2) = 2k
k+k=2k

Case: n is odd, n = 2k+1
floor((2k+1)/2) + ceiling((2k+1)/2)
floor(k+1/2) + ceiling(k+1/2)
k+k+tl1=2k+1

I Modulus

I Modulus iIs the remainder of the

I quotient a/n:
a mod n = a — n floor(a/n)

{%2=1

s B 4
7+2 = 3

Factorial

n'=1x2 x3x...Xn

41 =4 x3x2x1 =24

Guess the order (low to high):
1,000 1,000,000 1,000,000,000
25 210 215 220 230

510! 15! 20!

I The order is (low to high):

| {25, 51, (1,000), 21, 21,
(1,000,000), 2<°, 10!,
(1,000,000,000), 2°°, 15!, 20!}
10! = 3,628,800
15! = 1,307,674,400,000
20! = 2,432,902,000,000,000,000
(219 =1024 ~ 1,000 = 10°)

Factorial

1. n! = Q(g(n))

Factorial

Find g(n) such that (g(n) # n!):

2. n! = O(g(n))

I 1. nl =Q(g(n))
I -n! = Q(1) is a poor answer
-n! = Q(2") is decent

Factorial

2. n! =0(g(n))
-n! = O(n")

I Exponentials

I (@)™ =a": (2°)*=8*=4096 = 2%
| anam = v 2324 = 8x16 = 128 = 2’
aO — 1 ftﬁ);zms |

a' = a
a'l=1/a o

/
/

I Exponentials

for all constants: a>1 and b:
lim(n—-o)n®/a"=0

What does this mean in big-O
notation?

Exponentials

What does this mean in big-O
notation?

n° = O(a") for any a>1 and b

i.e. the exponential of anything
eventually grows faster than any
polynomials

Exponentials

Sometimes useful facts:
e* = sum(i=0 to o) x' / i!

e* = lim(n — o0) (1 + x/n)"

Recurrence relationships

Write the first 5 numbers, can you
find a pattern:

1.F=F +2withf =0
2.F =2F withf =3
3.F=F +F ,withf=0andf =1

Recurrence relationships

1.F =F +2withf =0
-F =0,F =2, F =4, F =6, F,=8
-F =2i

2.F =2F with fO =3
-F =3,F =6, F =12, F =24, F =48
-Fi=3X2i

Recurrence relationships
3.F =F _ +F ,withf=0and{f =1
-F=0,F=1,F=1,F=2,F=3
-F =5,F =8, F =13, F =21, F =34

y; > g S o
e _I[\/Iogloj!r

_Fi = \ v

[(1+sqgrt(5))'—(1-sqrt(5))']/(2'sqrt(5))

Recurrence relationships

3.F. =F +F is homogeneous
We as F. = cF_ is exponential,
we guess a solution of the form:
F' = F-' + F**, divide by F**
F-=F + 1, solve for F

F = (1 £ sqrt(5))/2, so have the form
al(1 + sqrt(5))/2]'+b[(1 — sqrt(5))/2]

I al(1 + sqrt(5))/2]'+b[(1 — sqrt(5))/2]
I with F =0 and F =1
2x2 System of equations — solve
i=0: a[1] +b[1]=0 - a=-b
i=1: a[1+sqrt(5)/2] — a[1-sqrt(5)/2]
alsqrt(5)] =1
a = 1/sqrt(5) = -b

Recurrence relationships

Recurrence relationships

F =2F -F ,change to exponent

I F' = 2F"! - F2 divide by F**

F°=2F-1 - (F-1)(F-1) =0
This will have solution of the form:
"+ix 1

Next week sorting

- Insert sort
- Merge sort
- Bucket sort
- And more!

