=

NUMBERS QF THE FORM
nf-I ARE “IMAGINARY"
BUT CAN STILL BE USED
IN EQUATIONS,

| OKAY.
AND e™7:--1. J

NOW YOURE JUST
FUCKING WITH ME.

-

I PA2 due Sunday

Announcements

HW 3 (last!) posted this weekend
(will be 3 problems)

Fast Fourier Transform

Gy ys oo By Cirlinary multiplication [: ' |\ Coefficient
' : B “or “17 ot Can-2 f representalions
bbb Tirne O 1 Presentaingn
gt P , nl | e Eins) — | J
Evaluation [nterpolation
Time &{x 1z #) | Time &{n lg n)
Y \
{ il . ll'.l
Al rll%ﬂj, HI:I::?EI“} E._{ﬂ IEJ | |
Al), B,) Pointwise multiplication # Cle,) \ Poini-value
: [Time () : represeniations
e Qi) :

1 : in : In
| AGe2), Bagr) | Clan,™) |

I 4 Math ground work

Let wﬁ _ 627Tik/n | L r
= cos(27k/n) + isin(27k/n) %

e I k.
Called “n™ roots of unity” |
We will prove/use: T PR

Lwik =wk (Vn>0,k>0,d>0)

2.wi'? = —1 (Vn > 0)

n—1 .
3. 3 (wk) =0 (Vn > 0, k not divisible by n)
j=0

4. If n > 0 is even, square of nth
unity roots are n/2 unity roots

Math ground work

-
dk k

Prove: wg’ = w,
I By definition:

wik = e2mi(dk)/(dn) — 2mik/n — 4k
Prove: w™/? = —1

Again, by definition:

w;{:/Q _ p2mi(n/2)/n _ ,2mi(1/2)

—=e"' = —1

Math ground work

.

wn
| =

A geometric sum is known to be:
n—1
S ard = al="
i=0 =7 .. thus:
n—1 k\n nk

kyj — 1=(wy)” _ 1—=(w,”) _ 1-1 _
Zo(wn)J 1l-wk T 1—wk T 1—wk
]:

k not divisible by n, denominator # 0

I7

Prove: If n > 0 is even, square of nth
I unity roots are n/2 unity roots

Math ground work

Direct proof:
(w))? = wy* = wy , (using proof #1)

Picture proot: | AN
(w§)2 — (627Tzk/n)2 _ 627Tz(2k)/n 0 _ .

Thus, twice the angle Rt E

I

First, we need to efficiently go from
I coeff1c1ent to point form (n is even)

Fast Fourier Transform

A(z) = E_:O a; - 27 = (20,Y0), - (Tn—1, Yn—1)

We will use the n roots of unity for xs

_ ok _ k-9
Tk =We, Yp=) aj - wy?

I

Fast Fourier Transform

We can use the symmetry of the unity
I roots to divide & conquer:

First we break even and odd indexed

coefficients into their own polys

AL
A

1 (z) = a; -

(x) = ap -

- A2

- aA3x

2

AAX™ T ...

2

asX —T ...

- Up—2

- Unp—1

Z.n/2—1
xn/2—1

E

By following this process, we get
I the following tree: A(x)
¥

Fast Fourier Transform

A[O] @;I_'.fii.ﬂfﬁ.ﬂiﬂﬁ.ﬂ;;} A[l]

Fast Fourier Transform

A;O; (x) = ag + asx + asx? + ... + a, _ox™/ 21
IA-l- () = a1 + asx + asx® + ... + ap_1z™/?7]
We then notice that:
A: :(mz) = ag + asx® + agx* + ... + a,_ox" 2
At (2?) = a1 + azx? + asx* + ... + ap_12" 2
Thus:

A(x) = A(22) 4+ 2 A (2?)

Fast Fourier Transform

By proof #4 computmg A() as:
Alx 2) + 2z A (2?), with z = wF

|-
I
I

... breaks down the problem into:

two parts, each with half the points

(as squaring nth unity roots gives
n/2 unity roots)

I Recursive-FFT(a)
= a.length (n assumed power of 2)
I if (n == 1), return a
W = e2m/n W = 1

d O — (ao, 5y wee an-Z)’ a[] — (al, 3> *° n_1)
y[0] = Recursive-FFT(a[0])
y[1] = Recursive-FFT(a[1])
fork=0ton/2-1
=yl0] +w*yl[l]
yk+(n/2) - y[o]k -w y[l]k
W=W*wW

Fast Fourier Transform

return y

B

For loop runs O(n) times with O(1)
I work inside each loop

Fast Fourier Transform

2 recursive calls eachlsize n/2, thus...

N\
T(n) =2 T(n/2)|+O0(n)
O(n'°922) = O(n') = O(n), thus...
and recursion work the same

Thus, tack on a lgn to it: O(nlgn)

The first line of loop computes:

yk—y[]—|—wn y,L]

Fast Fourier Transform

—A (ka)_|_w . [1](,w%k)
Slmﬂarl , the second finds:
yk—l—(n/2) yl}] wk - yl[gl APFOOf #2

= A0 (w2F) + (~1) 7w - A >
= A w2 () - wh

k
:Aj()j(2k—|—n) et (n/2) ,724[1] (ka—l—n)
— Aw k+(n/2))

16

Fast Fourier Transform

(77 i T |_ Ordinary multiplication [e e L | '.} If‘.u-*:l'l'_iuin:n[_
by bpy e B, Time Bin") | i J represcrialions
([J ikl A
J USt Evaluation [nierpolation <
did [™°* did last time |™*"*"
Y T Y eoo _(
A(6},). Bal,) Cla)) |
Fi{ﬂl_!ﬂ]. Biﬂ-ﬁjnﬁ' ~ Pointwise multiplication L ':'{fil_;l“:l | F.’m:.n-.-.-a]ue_ |
: - Time ©01) f representations
An- In
Al ™), Blaz ™) Clag,) |

E

Fast Fourier Transform

[f you remember from last time,

we want to solve for a's in:

Yo
Y1
Y2
Y3

| Yn—1_

1

S

T 3w 3N 3

w

1

w
w

n
n

—1

1 1

2 3

w, w,

4 §

wy, w,

w, wy,
2(n—1 3(n—1
W20 3

I18

To solve for a's in previous, we use
I the math magic below!

Fast Fourier Transform

If we call V' the previous Square matrix,
then the (j,k) entry in V=1 is: + w7 X

The current (j,k) entry of V is: w’*

Due to unity root magic

|

Proof: (that this is V)
I Entry (7,k) in V- V=1 = Z wl * (Lw, = k)

Fast Fourier Transform

n—1

x k —k)\
Zw(J) nz(wq(g))

=0

Using proot #3, if j # k then this is 0
When j = k, we have = Z ()" =1

I Fast Fourier Transform

Wait, a second... we basically just
I solved y = V a, with Vi r) = w)”

Now we want to solve (knowing y

nota)a=V'y, with Vi, = 5w’ "

This is a very similar problem!

I Fast Fourier Transform

I Recursive-FFT-backwards(y) ISWEIP y and aI

n = y.length (n assumed power of 2)
I if (n ==1), return y
w=e " w=1 <= only added “-” to exponent

VIOl = (¥p ¥y - ¥,0)s YL = (Vs Va5 - V1)
al0] = Recursive-FFT(y[0])

al1] = Recursive-FFT(y[1])
fork=0ton/2-1

a_=al0] +w*all]

e al0] -w *a[l]

Wow W after recursion,
return a «— divide a by n

I23

Breaking down A(x) into A'%(x)
and AM(x) glves

(a{ (o, dq,dyds af L7 },_.:

(Gairava :/ T T sz

oy

N TN

(Lag. 4}> ({4, '-'D 'a{m""*}) (a3.2 D

g AR o A o A o &

@ @ W W & @ @

Fast Fourier Transform

If we can get a. in order of the bottom
we can efficiently compute A

Fast Fourier Transform

Con51der the order:

| [a, La,a,a,al

See a pattern?

Fast Fourier Transform

Consider the order:

a a_]

I 03 43 2) 6) 1) 53 33

See a pattern?

... what if I write it as:
1000,100,010,110,001,101,011,111]

These are just the bits inversed

I26

I Thus, if we initially swap the
I coefficient matrix in this order...

Fast Fourier Transform

1. We can update the value in place

2. Each level of the tree, we compare
coeificients twice as far as the
previous

E

Thus we can compute it iterat

|

N

)
L)
dS z
° 2
) e /
!

()
{y —»
1
P
!
i3 > / f
! !
))
!
!
]
0
3

5 = |

5 x 3

>

Good for parallelL ﬁrocessihg?

Fast Fourier Transform

ively

This works well for a circuit,
but not so much for multi-core

The processes need to wait until all
previous level done to continue

I29

It might work just as well (or better)
I to parallelize the recursive calls

Fast Fourier Transform

o "-h.h,_H
(aga,.ay.03,04.05.05,07))

cpu #1 solves cpu #2 solves

Easy ~2x speed up!

