

Efficient multiplication

1

Matrix multiplication

If you have square matrices A and B,
then C = A*B is defined as:

Takes O(n3) time

2

Matrix multiplication

Can we do better?

What is the theoretical lowest
running time possible?

3

Matrix multiplication

Can we do better?
Yes!

What is the theoretical lowest
running time possible?

O(n2), must read every value at least
once

4

Matrix multiplication

Block matrix multiplication says:

Thus C
1
 = A

1
*B

1
 + A

2
*B

3
,

We can use this fact to make a
recursive definition

5

Matrix multiplication

Divide&conquer algorithm:
Mult(A,B)
If |A| == 1, return A*B (scalar)
else... divide A&B into 4 equal parts

C1 = Mult(A1,B1) + Mult(A2,B3)
C2 = Mult(A1,B2) + Mult(A2,B4)
C3 = Mult(A3,B1) + Mult(A4,B3)
C4 = Mult(A3,B2) + Mult(A4,B4)

6

Matrix multiplication

Running time:
Base case is O(1)
Recursive part needs to add two

n/4 x n/4 matrices, so O(n2)
8 recursive calls, each size n/2

T(n) = 8 T(n/2) + O(n2)
T(n) = O(nlog2 8) = O(n3)

7

Strassen's method

Although the simple divide&conquer
did not improve running time...

Can eliminate one recursive call to
get O(nlog2 7) with fancy math

Has a much larger constant factor, so
not useful unless matrix big

8

Strassen's method

Step 1: compute some S's
(just 'cause!)

S1=B2-B4 S6=B1+B4
S2=A1+A2 S7=A2-A4
S3=A3+A4 S8=B3+B4
S4=B3-B1 S9=A1-A3
S5=A1+A4 S10=B1+B2

9

Strassen's method

Step 2: compute some P's (7 < 8)
P1=A1*S1
P2=S2*B4
P3=S3*B1
P4=A4*S4
P5=S5*S6
P6=S7*S8
P7=S9*S10

10

Strassen's method

Step 3:

C1 = P5 + P4 - P2 + P6
C2 = P1 + P2
C3 = P3 + P4
C4 = P5 + P1 - P3 - P7

(Book works out algebra for you)

11

Strassen's method

In practice, you should never use
this on a matrix smaller than 16x16

The break-point is debatable, but
Strassen's is better if over 100x100

Theoretical methods exist to reduce
to O(n2.3728639), but not practical at all

12

Fast Fourier Transform

The FFT is a very nice algorithm
(ranks up there with bucket sort)

It has many uses, but we will use
it to solve polynomial multiplication

Naive approach takes O(n2) time
(i.e. FOIL)

13

Fast Fourier Transform

Assume we have polynomials:

C(x) = A(x) * B(x)

O(n) per c
j
, up to 2n c

j
's = O(n2)

14

Fast Fourier Transform

Rather than directly computing C(x),
map to a different representation

A(x) = (x
0
, y

0
), (x

1
, y

1
), ... (x

n
, y

n
)

Theorem 30.1: If x
i
 ≠ x

j
 for all i ≠ j,

then above gives a unique polynomial

15

Fast Fourier Transform

Proof: (direct)
Represent in matrix form:
[1 x

0
 x

0
2 ... x

0
n] [a

0
] [y

0
]

[1 x
1
 x

1
2 ... x

1
n] [a

1
] = [y

1
]

...
[1 x

n
 x

n
2 ... x

n
n] [a

n
] [y

n
]

The left matrix is invertible, done

16

Fast Fourier Transform

Q: Why bother with point-values?
A: We can do A(x) * B(x) in O(n)
in this space

Namely, (x
i
, cy

i
) = (x

i
, ay

i
*by

i
)

Need to get to point-value and back
to coefficients in less than O(n2)

17

Fast Fourier Transform

Coming soon! (next time)

done

18

