Efficient multiplication

wanna multiply
with me?

=)

sorry, you're
too small for me

@,

{: I~

C.-_l:-m

8
.
4

ILUC.'-IE-

fine, i'll
multiply by
myself

Iz

[f you have square matrices A and B,
then C = A*B is defined as:

Ci,j _y:k 0 @i,k * Ok, j

RS ETE
S R
w-[50 v]

Takes O(n°) time

Matrix multiplication

Is

Can we do better?

What is the theoretical lowest
running time possible?

Matrix multiplication

|4

Can we do better?
I Yes!

Matrix multiplication

What is the theoretical lowest
running time possible?

O(n®), must read every value at least
once

|5

Block matrix multiplication says:

Matrix multiplication

I A Ao [B;4 B| [C, |

5y Ayl | Bs B, | Cs C,

Thus C, = A *B, + A *B,

We can use this fact to make a
recursive definition

|6

Divide&conquer algorithm:
! Mult(A,B)

If |A| == 1, return A*B (scalar)

else... divide A&B into 4 equal parts
Cl = Mult(A1,B1) + Mult(A2,B3)
C2 = Mult(A1,B2) + Mult(A2,B4)
C3 = Mult(A3,B1) + Mult(A4,B3)
C4 = Mult(A3,B2) + Mult(A4,B4)

Matrix multiplication

|7

Running time:
I Base case is O(1)
Recursive part needs to add two
n/4 x n/4 matrices, so O(n?)
8 recursive calls, each size n/2

Matrix multiplication

T(n) =8 T(n/2) + O(n?)
T(n) = O(n"#*%) = O(n?)

|8

Although the simple divide&conquer
I did not improve running time...

Strassen's method

Can eliminate one recursive call to
get O(n'°s*”) with fancy math

Has a much larger constant factor, so
not useful unless matrix big

|9

Strassen's method

Step 1: compute some S's

(just 'cause!)

S1=B2-B4
S2=A1+A2
S3=A3+A4
S4=B3-B1
S5=A1+A4

S6=B1+B4
S7=A2-A4
S8=B3+B4
S9=A1-A3
S10=B1+B2

IlO

Step 2: compute some P's (7 < 8)
P1=A1*S1

P2=S2*B4

P3=S3*B1

P4=A4*S54

P5=S5*56

P6=S7*S8

P7=S9*S10

Strassen's method

Ill

+ .
. :k : f
I Step 3: .-~ Magic!

Strassen's method

~
Cl=P5+P4-P2+P6
C2=P1+ P2
C3=P3+ P4
C4=P5+P1-P3-P7

(Book works out algebra for you)

I12

In practice, you should never use
this on a matrix smaller than 16x16

Strassen's method

The break-point is debatable, but
Strassen's is better if over 100x100

Theoretical methods exist to reduce
to O(n**"#%*), but not practical at all

|13

The FFT is a very nice algorithm
I (ranks up there with bucket sort)

Fast Fourier Transform

[t has many uses, but we will use
it to solve polynomial multiplication

Naive approach takes O(n?) time
(i.e. FOIL)

Assume we have polynomlals

Fast Fourier Transform

I z_: a; -1, B(x) = ;Ob .)
C(x) = A(X) B(x)
C(x) = chxﬂ ¢ = 2.k bjk

O(n) per C,upto2nc's = O(n?)

I15

Rather than directly computing C(x),
I map to a different representation

Fast Fourier Transform

AX) = (X ¥o)s (X, ¥,)5 o (X, ¥)

Theorem 30.1: If X # X foralli#j,
then above gives a unique polynomial

I16

Proof: (direct)
I Represent in matrix form:

[1x, x°...x"]la,] L[y,
[1x, x*...x"][a]= ly,]

Fast Fourier Transform

[1x x*..x"][a] [y]
The left matrix is invertible, done

I17

Q: Why bother with point-values?
| A: We can do A(x) * B(x) in O(n)
in this space

Fast Fourier Transform

Namely, (x, cy.) = (X, ay,*by)

Need to get to point-value and back
to coefficients in less than O(n?)

18

Fast Fourier Transform

Aal), Bla))] * Clat,)
A{fﬂ-_!,:]. Hlim_;!”} - Pointwise multiplication s {_-{mjlﬂj

: Time i
A2, B@) | Ciag ™)

Coming soon! (next time)

s By o G _ Oirdlinary nmltiplita‘.iun i o et '
by By wn B, Time Bin) | S #
T : A
Evaluation * [nterpolation

Time B(n lz 1) done | Time Gn la 1)

| Coefficient
O orepresentaiions
]

| Pomnt-value
I [EPrescniaclons

