

Network Flow

1

Network Flow terminology

Network flow is similar to finding
how much water we can bring from
a “source” to a “sink” (infinite)
(intermediates cannot “hold” water)

5

Network Flow terminology

Definitions:
c(u,v) : edge capacity, c(u,v) > 0
f(u,v) : flow from u to v s.t.

1. 0 < f(u,v) < c(u,v)
2. ∑

v
 f(u,v) = ∑

v
 f(v,u)

s : a source, ∑
v
 f(s,v) > ∑

v
 f(v,s)

t : a sink, ∑
v
 f(t,v) < ∑

v
 f(v,t)

6

flow out
=flow in

Network Flow terminology

Definitions (part 2):
|f| = ∑

v
 f(s,v) - ∑

v
 f(v,s)

^ amount of flow from source

Want to maximize |f| for the
maximum-flow problem

7

Network Flow terminology

Graph restrictions:
1. If there is an edge (u,v), then there

cannot be edge (v,u)
2. Every edge is on a path from

source to sink
3. One sink and one source

(None are really restrictions)

8

Network Flow terminology

1. If there is an edge (u,v), then there
cannot be edge (v,u)

a

b

a

b

ba

9

Network Flow terminology

2. Every edge is on a path from
source to sink

s t

a b

flow in = flow out,
only possible
flow in is 0

(worthless
edge)

10

Network Flow terminology

3. One sink and one source

s
1

s
2

a

t
1

t
2

s
1

s
2

a

t
1

t
2

t

s

∞

∞

∞
∞

11

Ford-Fulkerson

Idea:
1. Find a path from source to sink
2. Add maximum flow along path

(minimum capacity on path)
3. Repeat

Note: this path needs to be found in a
“residual” graph

12

Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left
Back edges = flow

13

Original Residual

Ford-Fulkerson

Idea: Find a way to add some flow,
modify graph to show this flow
reserved... repeat.

s

b a

t

810

420
7

s

b a

t

410

420

7
4

Augment

14

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
initialize network flow to 0
while (exists path from s to t)

augment flow, f, in G along path
return f

(Note: “augment flow” means add
this flow to network)

15

Ford-Fulkerson

cut

16

Ford-Fulkerson

Subscript “f” denotes residual (or
modified graph)
G

f
 = residual graph

E
f
 = residual edges

c
f
 = residual capacity

c
f
(u,v) = c(u,v) - f(u,v)

c
f
(v,u) = f(v,u)

17

“forward edge”
capacity - flow

“back edge”
just flow

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap. on path

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (u,v).f=(u,v).f - c
f
(p)

18

Ford-Fulkerson

Runtime:

How hard is it to find a path?

How many possible paths could
you find?

19

Ford-Fulkerson

Runtime:

How hard is it to find a path?
-O(E) (via BFS or DFS)
How many possible paths could
you find?
- |f*| (paths might use only 1 flow)

.... so, O(E |f*|)

20

Ford-Fulkerson

(f ↑ f')(u,v) = flow f augmented by f'
(f ↑ f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)

Lemma 26.1: Let f be the flow in G,
and f' be a flow in G

f
, then (f ↑ f')

is a flow in G with total amount:
|f ↑ f'| = |f| + |f'|

Proof: pages 718-719

21

Ford-Fulkerson

For some path p:
c

f
(p) = min(c

f
(u,v) : (u,v) on p)

^^ (capacity of path is smallest edge)

Claim 26.3:
Let f

p
 = c

f
(p), then

|f ↑ f
p
| = |f| + |f

p
|

22

Ford-Fulkerson

More bad notation:
c(u,v) = capacity of an edge
if u and v are single vertexes

c(S,T) = capacity across a cut
if S and T are sets of vertexes

... Similarly for f(u,v) and f(S,T)

23

Max flow, min cut

Relationship between cuts and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

24

Max flow, min cut
25

Max flow, min cut

Relationship between cuts and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

cut capacity > flows across cut

26

Lemma 26.4
Let (S,T) be any cut, then f(S,T) = |f|

Proof:
Page 722
(Kinda long)

Max flow, min cut
27

Corollary 26.5
Flow is not larger than cut capacity
Proof:
|f| = ∑

u in S
∑

v in T
 f(u,v)-∑

u
∑

v
 f(v,u)

< ∑
u in S

∑
v in T

 f(u,v)
< ∑

u in S
∑

v in T
 c(u,v)

= c(S,T)

Max flow, min cut
28

Theorem 26.5
All 3 are equivalent:
1. f is a max flow
2. Residual network has no aug. path
3. |f| = c(S,T) for some cut (S,T)

Proof:
Will show: 1 => 2, 2=>3, 3=>1

Max flow, min cut
29

maximum network flow
= min cut (i.e. bottlneck)

f is a max flow => Residual network
has no augmenting path

Proof:
Assume there is a path p
|f ↑ f

p
| = |f| + |f

p
| > |f|, which is a

 contradiction to |f| being a max flow

Max flow, min cut
30

Residual network has no aug. path =>
|f| = c(S,T) for some cut (S,T)
Proof:
Let S = all vertices reachable from

s in G
f

u in S, v in T => f(u,v) = c(u,v) else
there would be path in G

f

Max flow, min cut
31

Also, f(v,u) = 0 else c
f
(u,v) > 0 and

again v would be reachable from s

f(S,T) =∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

=∑
u in S

∑
v in T

 c(u,v)-∑
u
∑

v
 0

=c(S,T)

Max flow, min cut
32

|f| = c(S,T) for some cut (S,T)
=> f is a max flow

Proof:
|f| < c(S,T) for all cuts (S,T)

Thus trivially true, as |f| cannot get
larger than C(S,T)

Max flow, min cut
33

Edmonds-Karp

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (u,v).f=(u,v).f - c
f
(p)

exists shortest path (BFS)

34

Edmonds-Karp

Lemma 26.7
Shortest path in G

f
 is non-decreasing

Theorem 26.8
Number of flow augmentations by
Edmonds-Karp is O(|V||E|)
So, total running time: O(|V||E|2)

35

Matching

Another application of network flow
is maximizing (number of)matchings
in a bipartite graph

Each node cannot be “used” twice

36

Matching

Add “super sink” and “super source”
(and direct edges source -> sink)
capacity = 1 on all edges s

t

37

