

I5

Network Flow terminology

Network flow is similar to finding

I how much water we can bring from
a “source” to a “sink” (infinite)
(mtermechates cannot “hold” water)

/ A OO?ft

—

I - 1
01 10 ft¥s
=10 psi

I6

I Definitions:
I c(u,v) : edge capacity, c(u,v) > 0
f(li,vz): <ﬂfczw f;0<mcz1 to)v S.t. low out
. u,v u,v
2. Zv_f(u,;f) =_ZV f,(V,ll) " =flow in
s : asource, » f(s,v) >} 1(v,s)
t:asink, » f(t,v) <> 1(vt)

Network Flow terminology

I Network Flow terminology

Definitions (part 2):
| if= 3, fsv) - 3, f(vs)

A amount of flow from source

Want to maximize |f| for the
maximum-flow problem

I Network Flow terminology

Graph restrictions:
I 1. If there is an edge (u,v), then there
cannot be edge (v,u)
2. Every edge is on a path from
source to sink
3. One sink and one source

(None are really restrictions)

Network Flow terminology

1. If there is an edge (u,v), then there
cannot be edge (v,u)

I9

I10

I 2. Every edge is on a path from
I source to sink

flow in = flow out,

only possible

flow inis O \ e Q

(worthless
edge)

Network Flow terminology

I11

Network Flow terminology

3. One sink and one source

I Ford-Fulkerson
Idea:
I 1. Find a path from source to sink
2. Add maximum flow along path
(minimum capacity on path)
3. Repeat

Note: this path needs to be found in a
“residual” graph

I13

Ford-Fulkerson

What is a residual graph?

Forward edges = capacity left
Back edges = flow
Orlgmal Residual

1V ‘hﬁ) > ®// 5\
ENPS N s

I14

Idea: Find a way to add some flow,
I modify graph to show this tlow
reserved... repeat.

Ford-Fulkerson

I15

Ford-Fulkerson(G, s, t)
I initialize network flow to 0
while (exists path from s to t)
augment flow, f, in G along path
return {

Ford-Fulkerson

(Note: “augment flow” means add
this flow to network)

I17

Subscript “f” denotes residual (or
I modified graph)
G, = residual graph

E, = residual edges

Ford-Fulkerson

ccforward edge”
capacity - flow

c, = residual capacity
c(u,v) = c(u,v) - f(u,v) “back edge”

c(v,u) = t(v,u) — justflow

I18

Ford-Fulkerson(G, s, t)
I for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G,

Ford-Fulkerson

find c/(p) // minimum edge cap. on path

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c(p)

else: (u,v).f=(u,v).f - c(p)

I19

Runtime:

How hard is it to find a path?

Ford-Fulkerson

How many possible paths could
you find?

I2o

I Runtime:
How hard is it to find a path?
-O(E) (via BFS or DFS)
How many possible paths could
you find?
- |T*| (paths might use only 1 flow)
.... S0, O(E |t%*])

Ford-Fulkerson

I21

(f t £')(u,v) = flow f augmented by {'
| (1)W) = fuv) + Fy) - fvu)

Ford-Fulkerson

Lemma 26.1: Let f be the tflow in G,
and f' be a tlow in G, then (f 1)

is a flow in G with total amount:
it 1] = |t + |f]
Proof: pages 718-719

I22

For some path p:
| c(p) = min(c,(uv) : (wv) on p)
AN (capacity of path is smallest edge)

Ford-Fulkerson

Claim 26.3:
Let f]D = c/(p), then

fri]=I[t+]t)]
P P

I23

More bad notation:
I c(u,v) = capacity of an edge
if u and v are single vertexes

Ford-Fulkerson

c(S,T) = capacity across a cut
if S and T are sets of vertexes

... Similarly for f(u,v) and £(S,T)

I24

I Relationship between cuts and flows?

I C(S T) ~ Zu n Szva C(u V)
£(S,T) = ZumstmT f(u v)-2.2, fv,u)

Max flow, min cut

Max flow, min cut

I26

I Relationship between cuts and flows?

I C(S T) ~ Zu n Szva C(u V)
£(S,T) = ZumstmT f(u v)-2.2, fv,u)

Max flow, min cut

cut capacit§; > flows across cut

I27

Lemma 26.4
I Let (S,T) be any cut, then £(S,T) = |{]

Max flow, min cut

Proot:
Page 722
(Kinda long)

I28

Corollary 26.5
I Flow is not larger than cut capacity
Proot:

1 =2 nsZenr HWV)-2 2 1(V,u)
< LumsZymr H(WY)
= Luinslyvint C(WY)
= ¢(S,T)

Max flow, min cut

I29

Theorem 26.5
I All 3 are equivalent:
1. fis a max flow
2. Residual network has no aug. path
3. |[f| = ¢(S,T) for some cut (S,T)
"\ maximum network flow

Proof: = min cut (i.e. bottlneck)
Will show: 1 => 2, 2=>3, 3=>1

Max flow, min cut

I3o

f is a max flow => Residual network
I has no augmenting path

Max flow, min cut

Prootf:

Assume there is a path p
trt]=1t+|f]>|t], whichis a

contradiction to |f| being a max flow

I31

Residual network has no aug. path =>
I f| = ¢(S,T) for some cut (S,T)
Proof:
Let S = all vertices reachable from
sin G,

Max flow, min cut

uin S, vin T => f(u,v) = c(u,v) else
there would be path in G,

I32

Max flow, min cut

Also, f(v,u) = 0 else c(u,v) > 0 and
I again v would be reachable from s

f(S’T) :Zuin SZViDT f(u,V)-ZuZV f(V,U)
:Zuin SZVinT C(U,V)-ZUZV 0
=c(S,T)

3

Max flow, min cut

f| = ¢(S,T) for some cut (S,T)
=> 1 is a max flow

I3

Proot:
| < c(S,T) for all cuts (S,T)

Thus trivially true, as |f| cannot get
larger than C(S,T)

I Edmonds-Karp

I exists shortest path (BFS)
—Ford-Futkersen(G, s, t)

I for: each edge (u,v) in G.E: (u,v).f=0
while: existspath-frem-ste-t+in-G—
find c(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c(p)
else: (u,v).t=(u,v).tf - c(p)

I35

Lemma 26.7
I Shortest path in G, is non-decreasing

Edmonds-Karp

Theorem 26.8

Number of flow augmentations by
Edmonds-Karp is O(|V||E|)
So, total running time: O(|V||E|*)

I Matching

Another application of network flow
I is maximizing (number of)matchings
in a bipartite graph

, ><5§: N] 3
) / IR\ q /f
/ VN [N

Each node cannot be “used” twice

I Matching

Add “super sink” and “super source”
I (and direct edges source -> sink)
capacity = 1 on all edges _ s

