

Minimum Spanning Tree
(undirected graph)

1

Path tree vs. spanning tree

We have constructed trees in graphs
for shortest path to anywhere else
(from vertex is the root)

Minimum spanning trees instead
want to connect every node with
the least cost
(undirected edges)

2

Path tree vs. spanning tree

Example: build the least costly
road that allows cars to get
from any start to any finish

3

Safe edges

We an find (again) a greedy
algorithm to solve MSTs

We can repeatedly add safe edges
to an existing solution:

1. Find (u,v) as safe edge for A
2. Add (u,v) to A and repeat 1.

4

Safe edges

A cut S: (S, V-S) for any verticies S
Cut S respects A: no edge in A has
one side in S and another in V-S

5

Safe edges

A cut S: (S, V-S) for any verticies S
Cut S respects A: no edge in A has
one side in S and another in V-S

S = circles V-S = squares

S respects
A if no
red edges

6

Safe edges

Theorem 23.1:
Let A be a set of edges that is
included in some MST

Let S be a cut that respects A

Then the minimum edge that crosses
S and V-S is a safe edge for A

7

Safe edges

Theorem 23.1:

LHS = S RHS = V-S

blue = minimum
safe edge

 A = red edges

8

Safe edges

Proof:
Let T be a MST that includes A
Add minimum safe edge (u,v)
Let (x,y) be the other edge on the cut
Remove (x,y), and call this T' thus:
w(T') = w(T) + w(u,v) - w(x,y)
But (u,v) min, so w(u,v) < w(x,y)
Thus, w(T ') < w(T) and we done

9

Safe edges

No-cycle theorem: There is no cut
through edge (u,v) that respects A
if adding (u,v) creates a cycle

???

Safe edges

Proof: (contradiction)
Suppose cut exists (u in S, v in V-S)
Adding (u,v) creates a cycle
Thus A has path from u to v
Must exist some edge (x,y) with

x in S and y in V-S
S cuts this edge and thus cannot

respect A

Kruskal

Idea:
1. Sort all edges into a list

2. If the minimum edge in the list
does not create a cycle, add it to A

3. Remove the edge and repeat 2
until no more edges

12

Kruskal

MST-Kruskal(G,w)
A = { }
for each v in G.V: Make-Set(V)
sort(G.E)
for (u,v) in G.E (w(u,v) increasing)

if Find-Set(u) ≠ Find-Set(v)
A= A U {(u,v)}
Union(u,v)

13

Kruskal
14

Prim
15

Kruskal

Runtime:
Find-Set takes about O(lg |V|) time
(Ch. 21)

Thus overall is about O(|E| lg |V|)

16

Prim

Idea:
1. Select any vertex (as the root)
2. Find the shortest edge from a

vertex in the tree to a vertex outside
3. Add this edge (and the connected

vertex) to the tree
4. Goto 2.
Like Dijkstra, but different relaxation

17

Prim

MST-Prim(G, w, r) // r is root
for each u in G.V: u.key=∞, u.π=NIL
r.key = 0, Q = G.V
while Q not empty

u = Extract-Min(Q)
for each v in G.Adj[u]

if v in Q and w(u,v) < v.key
v.key=w(u,v), v.π=u

18

modified “relax”
from Dijkstra

Prim

Runtime:
Extract-Min(V) is O(lg |V|), run |V|
times is O(|V| lg |V|)

for loop runs over each edge twice,
minimizing (i.e. Decrease-Key())...
O((|V|+|E|) lg |V|) = O(|E| lg |V|)
(Fibonacci heaps O(|E| + |V| lg |V|))

19

Prim
20

Network Flow

Network Flow terminology

Network flow is similar to finding
how much water we can bring from
a “source” to a “sink” (infinite)
(intermediates cannot “hold” water)

Network Flow terminology

Definitions:
c(u,v) : edge capacity, c(u,v) > 0
f(u,v) : flow from u to v s.t.

1. 0 < f(u,v) < c(u,v)
2. ∑

v
 f(u,v) = ∑

v
 f(v,u)

s : a source, ∑
v
 f(s,v) > ∑

v
 f(v,s)

t : a sink, ∑
v
 f(t,v) < ∑

v
 f(v,t)

Network Flow terminology

Definitions (part 2):
|f| = ∑

v
 f(s,v) - ∑

v
 f(v,s)

^ amount of flow from source

Want to maximize |f| for the
maximum-flow problem

Network Flow terminology

Graph restrictions:
1. If there is an edge (u,v), then there

cannot be edge (v,u)
2. Every edge is on a path from

source to sink
3. One sink and one source

(None are really restrictions)

Network Flow terminology

1. If there is an edge (u,v), then there
cannot be edge (v,u)

a

b

a

b

ba

Network Flow terminology

2. Every edge is on a path from
source to sink

s t

a b

flow in = flow out,
only possible
flow in is 0

(worthless
edge)

Network Flow terminology

3. One sink and one source

s
1

s
2

a

t
1

t
2

s
1

s
2

a

t
1

t
2

t

s

∞

∞

∞
∞

Ford-Fulkerson

Idea: Find a way to add some flow,
modify graph to show this flow
reserved... repeat.

s

b a

t

810

420
7

s

b a

t

410

420

7
4

Augment

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
initialize network flow to 0
while (exists path from s to t)

augment flow, f, in G along path
return f

Ford-Fulkerson

cut

Ford-Fulkerson

Subscript “f” denotes residual (or
modified graph)
G

f
 = residual graph

E
f
 = residual edges

c
f
 = residual capacity

c
f
(u,v) = c(u,v) - f(u,v)

c
f
(v,u) = f(v,u)

Ford-Fulkerson

(f ↑ f')(u,v) = flow f augmented by f'
(f ↑ f')(u,v) = f(u,v) + f'(u,v) - f'(v,u)

Lemma 26.1: Let f be the flow in G,
and f' be a flow in G

f
, then (f ↑ f')

is a flow in G with total amount:
|f ↑ f'| = |f| + |f'|

Proof: pages 718-719

Ford-Fulkerson

For some path p:
c

f
(p) = min(c

f
(u,v) : (u,v) on p)

^^ (capacity of path is smallest edge)

Claim 26.3:
Let f

p
 = f

p
(u,v) = c

f
(p), then

|f ↑ f
p
| = |f| + |f

p
|

Ford-Fulkerson

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (u,v).f=(u,v).f - c
f
(p)

Ford-Fulkerson

Runtime:

How hard is it to find a path?

How many possible paths could
you find?

Ford-Fulkerson

Runtime:

How hard is it to find a path?
-O(E) (via BFS or DFS)
How many possible paths could
you find?
- |f*| (paths might use only 1 flow)

.... so, O(E |f*|)

Max flow, min cut

Relationship between capacity and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

source

sink

Max flow, min cut

Relationship between cuts and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

source

sink

Max flow, min cut

Relationship between capacity and flows?
c(S,T) = ∑

u in S
∑

v in T
 c(u,v)

f(S,T) = ∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

cut capacity > flows across cut

Lemma 26.4
Let (S,T) be any cut, then f(S,T) = |f|

Proof:
Page 722
(Again, kinda long)

Max flow, min cut

Corollary 26.5
Flow is not larger than cut capacity
Proof:
|f| = ∑

u in S
∑

v in T
 f(u,v)-∑

u
∑

v
 f(v,u)

< ∑
u in S

∑
v in T

 f(u,v)
< ∑

u in S
∑

v in T
 c(u,v)

= c(S,T)

Max flow, min cut

Theorem 26.5
All 3 are equivalent:
1. f is a max flow
2. Residual network has no aug. path
3. |f| = c(S,T) for some cut (S,T)

Proof:
Will show: 1 => 2, 2=>3, 3=>1

Max flow, min cut

f is a max flow => Residual network
has no augmenting path

Proof:
Assume there is a path p
|f ↑ f

p
| = |f| + |f

p
| > |f|, which is a

 contradiction to |f| being a max flow

Max flow, min cut

Residual network has no aug. path =>
|f| = c(S,T) for some cut (S,T)
Proof:
Let S = all vertices reachable from

s in G
f

u in S, v in T => f(u,v) = c(u,v) else
there would be path in G

f

Max flow, min cut

Also, f(v,u) = 0 else c
f
(u,v) > 0 and

again v would be reachable from s

f(S,T) =∑
u in S

∑
v in T

 f(u,v)-∑
u
∑

v
 f(v,u)

=∑
u in S

∑
v in T

 c(u,v)-∑
u
∑

v
 0

=c(S,T)

Max flow, min cut

|f| = c(S,T) for some cut (S,T)
=> f is a max flow

Proof:
|f| < c(S,T) for all cuts (S,T)

Thus trivially true, as |f| cannot get
larger than C(S,T)

Max flow, min cut

Edmonds-Karp

Ford-Fulkerson(G, s, t)
for: each edge (u,v) in G.E: (u,v).f=0
while: exists path from s to t in G

f

find c
f
(p) // minimum edge cap.

for: each edge (u,v) in p
if(u,v) in E: (u,v).f=(u,v).f + c

f
(p)

else: (u,v).f=(u,v).f - c
f
(p)

exists shortest path (BFS)

Edmonds-Karp

Lemma 26.7
Shortest path in G

f
 is non-decreasing

Theorem 26.8
Number of flow augmentations by
Edmonds-Karp is O(|V||E|)
So, total running time: O(|V||E|2)

Matching

Another application of network flow
is maximizing (number of)matchings
in a bipartite graph

Each node cannot be “used” twice

Matching

Add “super sink” and “super source”
(and direct edges source -> sink)
capacity = 1 on all edges s

t

