

Weighted graphs

1

Weighted graphs

So far we have only considered
weighted graphs with “weights > 0”
(Dijkstra is a super-star here)

Now we will consider graphs with
any integer edge weight (i.e. negative
too)

2

Cycles

Does a shortest path need to contain
a cycle?

3

Cycles

Does a shortest path need to contain
a cycle?

No, case by cycle weight:
positive: why take the cycle?!
zero: can delete cycle and find same

length path
negative: cannot ever leave cycle

4

Bellman-Ford

One of the few “brute force”
algorithms that got a name

Idea:
1. Relax every edge (yes, all)
2. Repeat step 1 |V| times (or |V|-1)

5

Bellman-Ford

BF(G, w, s)
initialize graph
for i=1 to |V| - 1

for each edge (u,v) in G.E
relax(u,v,w)

for each edge (u,v) in G.E
if v.d > u.d+w(u,v): return false

return true

6

Bellman-Ford
7

Bellman-Ford

Correctness: (you prove)

After BF finishes: if δ(s,u) exists,
 then δ(s,u) = u.d

8

Bellman-Ford

Correctness: (you prove)

After BF finishes: if δ(s,u) exists,
 then δ(s,u) = u.d

Relxation property 5, as every edge
is relaxed |V|-1 times and there are no
loops

9

Bellman-Ford

Correctness: returns false if neg cycle
Suppose neg cycle: c = <v

0
, v

1
, ... v

k
>

then w(c) < 0, suppose BF return true
Then v

i
.d < v

i-1
.d + w(v

i-1
, v

i
)

sum around cycle c:
∑k

i=1
 v

i
.d < ∑k

i=1
 (v

i-1
.d +w(v

i-1
,v

i
))

∑k
i=1

 v
i
.d < ∑k

i=1
 v

i-1
.d as loop

10

Bellman-Ford

Correctness: returns false if neg cycle
∑k

i=1
 v

i
.d < ∑k

i=1
 (v

i-1
.d +w(v

i-1
,v

i
))

∑k
i=1

 v
i
.d = ∑k

i=1
 v

i-1
.d as loop

so 0 < ∑k
i=1

 w(v
i-1

,v
i
)

but ∑k
i=1

 w(v
i-1

,v
i
) = w(c) < 0

Contradiction!

11

All-pairs shortest path

So far we have looked at:
Shortest path from a specific start
to any other vertex

Next we will look at:
Shortest path from any starting vertex
to any other vertex
(called “All-pairs shortest path”)

12

Johnson's algorithm

We will start by doing something
a little funny

(This will be the most efficient for
graphs without too many edges)

To compute all-pairs shortest path
on G, we will modify G to make G'

13

Johnson's algorithm

To make G', we simply add one
“super vertex” that connects to all
the original nodes with weight 0 edge

super vertex

G G'

15

Johnson's algorithm

Next, we use Bellman-Ford (last alg.)
to find the shortest path from the
“super vertex” in G' to all others
(shortest path distance, i.e. d-value)

0

-2

-3

0

16

Johnson's algorithm

Then we will “reweight” the graph:

0

-2

-3

new weight
(u,v) is a vertex pair (an edge from u to v)

old weight d-value in vertex

0

0

7

2

0

3

0

17

Johnson's algorithm

Next, we just run Dijkstra's starting
at each vertex in G (starting at A,
at B, and at C for this graph)
Call these
start A
start B
start C 0

-2

-3

0

0

7

2

0

3

0
0
∞
∞

0
0
0

0
∞
0

18

Johnson's algorithm

Finally, we “un-weight” the edges:

start A
start B
start C

0

-2

-3

0

0

7

2

0

3

0
0
∞
∞

-2
0
1

-3
∞
0

last time +
last time -

19

Johnson's algorithm

Johnson(G)
Make G'
Use Bellman-Ford on G' to get h
(and ensure no negative cycle)
Reweight all edges (using h)
for each vertex v in G

Run Dijkstra's starting at v
Un-weight all Dijkstra paths
return all un-weighted Dijkstra paths(matrix)

20

Johnson's algorithm

Runtime?

21

Johnson's algorithm

Runtime:
Bellman-Ford = O(|V| |E|)
Dijkstra = O(|V| lg |V| + E)

Making G' takes O(|V|) to add edges
Bellman-Ford run once
weight/un-weighting edges = O(|E|)
Dijkstra run |V| times most costly

22

Johnson's algorithm

Runtime:
Bellman-Ford = O(|V| |E|)
Dijkstra = O(|V| lg |V| + E)

O(|V|) + O(|V| |E|) + 2 O(|E|)
+ |V| O(|V| lg |V| + E)

= O(|V|2 lg |V| + |V| |E|)

23

Correctness

The proof is easy, as we can rely on
Dijkstra's correctness

We need to simply show:
(1) Re-weighting in this fashion

does not change shortest path
(2) Re-weighting makes only positive

edges (for Dijkstra to work)

24

Correctness

(1) Re-weighting keeps shortest paths
Here we can use the optimal
sub-structure of paths:

If
then
But as (v

i
, v

i+1
) is the edge taken:

25

Correctness

(1) Re-weighting keeps shortest paths
Then by definition of

26

Correctness

(1) Re-weighting keeps shortest paths
Thus, the shortest path is just offset
by “h(v

0
) - h(v

k
)” (also any path)

As v
0
 is the start vertex and v

k
 is the

end, so vertices along the path have
no influence on (same path)

27

Correctness

(2) Re-weighting makes edges > 0

One of our “relaxation properties”
is the “triangle inequality”

how h defined

28

TL;DR dynamic programming

What are two ways you can compute
the Fibonacci numbers?

F
n
 = F

n-1
 + F

n-2

with F
0
=0, F

1
=1

Which way is better?

30

TL;DR dynamic programming

One way, simply use the definition

Recursive:
F(n):

if(n==1 or n==0)
return n

else return F(n-1)+F(n-2)

31

TL;DR dynamic programming

Another way, compute F(2), then F(3)
... until you get to F(n)

Bottom up:
A[0] = 0
A[1] = 1
for i = 2 to n

A[i] = A[i-1] + A[i-2]

32

TL;DR dynamic programming

This second way is much faster

It turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

It can use a bit more memory,
but much faster

33

TL;DR dynamic programming

How many multiplication operations
does it take to compute:

x4?

x10?

34

TL;DR dynamic programming

How many multiplication operations
does it take to compute:

x4? Answer: 2

x10? Answer: 4

35

TL;DR dynamic programming

Can compute x4 with 2 operations:
x2 = x * x (store this value)
x4 = x2 * x2

Save CPU by using more memory!

Can compute xn using O(lg n) ops
Also true if x is a matrix

36

Shortest paths using matrices

Any sub-path (p
x,y

) of a shortest
path (p

u,v
) is also a shortest path

Thus we can recursively define a
shortest path p

0,k
 = <v

0
, ..., v

k
>, as:

w(p
0,k

)=min
“k-1”

(w(p
0,“k-1”

)+w(“k-1”,k))

37

Shortest paths using matrices

Thus a shortest path (using less than
m edges) can be defined as:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
),

where L1 is the edge weights matrix

Can use dynamic programming to
find an efficient solution

38

Shortest paths using matrices

Lm is not the mth power of L, but
the operations are very similar:

Lm = lm
i,j
 = min

k
(lm-1

i,k
 + l1

k,j
) // ours

Lm = lm
i,j
 = ∑

k
(lm-1

i,k
*l1

k,j
) //real times

Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)

39

Shortest paths using matrices

All-pairs-shortest-paths(W)
L(1) = W, n = W.rows, m = 1
while m < n

L(2m) = ESP(L(m), L(m))
m = 2m

return L(m)

(ESP is L min op on previous slide)

40

Shortest paths using matrices

Runtime:
|V|3 lg |V|

Correctness:
By definition (brute force with some
computation savers)

41

Floyd-Warshall

The Floyd-Warshall is similar but
uses another shortest path property

Suppose we have a graph G, if we
add a single vertex k to get G'

We now need to recompute all
shortest paths

42

Floyd-Warshall

Either the path goes through k,
or remains unchanged

dk
i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)

43

Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
d0

i,j
 = W

i,j
, n = W.rows

for k = 1 to n
for i = 1 to n

for j = 1 to n
dk

i,j
 = min (dk-1

i,j
, dk-1

i,k
 + dk-1

k,j
)

44

Floyd-Warshall

Runtime:
O(|V|3)

Correctness:
Again, by definition of shortest path

45

