Weighted graphs

A WEIGHTED RANDOM. NUMBER
GENEROTOR JUST PRODUCED
&y HEH BATCH OF NUMBERS.

LETS UsE THEM TO
BUILD NARRAT NEE'

K

ALL SAORTS COMMENTARY

I Weighted graphs

So far we have only considered
I weighted graphs with “weights > 0”
(Dijkstra is a super-star here)

Now we will consider graphs with
any integer edge weight (i.e. negative
too)

I3

Does a shortest path need to contain
I a cycle?

Cycles

9 ¢

S

I4

Does a shortest path need to contain
I a cycle?

Cycles

No, case by cycle weight:

positive: why take the cycle?!

zero: can delete cycle and find same
length path

negative: cannot ever leave cycle

I5

Bellman-Ford

One of the few “brute force”

I algorithms that got a name

Idea:

Efar:'nﬂ at the Eﬁfl’maf

she asiked me what
L was thin king chout
7

A

T shold have

made something up.

/

X

The Bellman- Ford

Glgorithm makes

terrible pilfow talk,
!

A

1. Relax every edge (yes, all)
2. Repeat step 1 |V| times (or |V|-1)

I Bellman-Ford

BF(G, w, s)
I initialize graph
fori=1to |V|-1
for each edge (u,v) in G.E
relax(u,v,w)
for each edge (u,v) in G.E
if v.d > u.d+w(u,v): return false
return true

Bellman-Ford

Mol L |
s oo
A x| 10
I o | ox
i i i
f) | ox
- X x
} % | ox
(s o | 8

lteration

2 [3| 4
i [i
(1] o
o | W) | b
x | 11

ks

| 2 fi
oy i L
= ! b

I Bellman-Ford

Correctness: (you prove)

After BF finishes: if 0(s,u) exists,
then o(s,u) = u.d

I Bellman-Ford

Correctness: (you prove)

After BF finishes: if 6(s,u) exists,
then o(s,u) = u.d

Relxation property 5, as every edge
is relaxed |V|-1 times and there are no
loops

I Bellman-Ford

Correctness: returns false if neg cycle
I Suppose neg cycle:c=<v ,v ,..v >

then w(c) <0, suppose BF return true
Thenv.d<v _.d+w(v_,V)

sum around cycle C.

Yr_ v.d< Y (v.,.d+w(v_,v))
Y v.d<Yy* v .dasloop

I Bellman-Ford

Correctness: returns false if neg cycle

| 5 vid <5 (v d +w(,,v)
Y v.d= Zk_1 v._..d as loop
so0< Y w(v v)

but Y*_ w(v,_,v)=w(c) <0

Contradiction!

I12

I So far we have looked at:

I Shortest path from a specific start
to any other vertex

All-pairs shortest path

Next we will look at:

Shortest path from any starting vertex
to any other vertex

(called “All-pairs shortest path”)

I13

I We will start by doing something
I a little funny

Johnson's algorithm

(This will be the most efficient for
graphs without too many edges)

To compute all-pairs shortest path
on G, we will modify G to make G'

I15

To make G', we simply add one
I “super vertex” that connects to all
the original nodes with weight Q edge

Johnson's algorithm

I16

I Next, we use Bellman-Ford (last alg.)

I to find the shortest path from the
“super vertex” in G' to all others
(shortest path distance, i.e. d-value)

Johnson's algorithm

I17

Johnson's algorithm

Then we will “reweight” the graph:
w(u,v) = w(u,v)+h(u) — h(v)

N /

A
T old weight d-value in vertex
(u,v) is a vertex pair (an edge from u to v)

new weight

I18

Johnson's algorithm

Next, we just run Dijkstra's starting

at each vertex in G (starting at A,
for this graph)

Call these d(u,v) S4B

start A v oA D)

I Fmally, we “un-weight” the edges:
I — 0(u, v)—h(u) + h(v)

Johnson's algorithm

/
Start A last time -
last time +

Izo

I Johnson(G)
I Make G'
Use Bellman-Ford on G' to get h
(and ensure no negative cycle)
Reweight all edges (using h)
for each vertex v in G
Run Dijkstra's starting at v
Un-weight all Dijkstra paths
return all un-weighted Dijkstra paths(matrix)

Johnson's algorithm

I21

Runtime?

Johnson's algorithm

Izz

I Runtime:
I Bellman-Ford = O(|V]| |E|)
Dijkstra = O(|V| Ig |V| + E)

Johnson's algorithm

Making G' takes O(|V]) to add edges
Bellman-Ford run once
weight/un-weighting edges = O(|E|)
Dijkstra run |V| times <—most costly

I23

I Runtime:
I Bellman-Ford = O(|V]| |E|)
Dijkstra = O(|V| Ig |V| + E)

Johnson's algorithm

O(IV]) + O(|V| [E]) + 2 O(JE])
+VIO(JV]lg [V] + E)

= O(|V|*1g |[V| + |V| [E|)

I24

The proot is easy, as we can rely on
I Dijkstra's correctness

Correctness

We need to simply show:

(1) Re-weighting in this fashion
does not change shortest path

(2) Re-weighting makes only positive
edges (for Dijkstra to work)

I25

(1) Re-weighting keeps shortest paths
I Here we can use the optimal
sub-structure of paths:

Correctness

If 0(u,z) =< wvg,v1,..vp > with vy = u and vy =
then d(u, z) = 0(vo, v1) + d(v1,va) + ... + 0(vk—1, V)
But as (v, v,) is the edge taken:

0(V;, Vir1) = wW(V;, Vit1)

I26

(1) Re-weighting keeps shortest paths
I Then by definition of 6(u,)

k
— Z w(vi—la Ui)
=1

k
— Zw(vi_l, ”07;> —+ h(vi—l — h<v2)
=1

Correctness

k
= h(vg) — h(vr) + Z’w(vz‘—la V;)

= h(vo) — h(vg) + 6(u, x)

I27

(1) Re-weighting keeps shortest paths
I Thus, the shortest path is just offset
by “h(v,) - h(v,)” (also any path)

Correctness

As A is the start vertex and v, is the

end, so vertices along the path have
no influence on é(u,) (same path)

I28

I (2) Re-weighting makes edges > 0

Correctness

One of our “relaxation properties”
is the “triangle inequality” <
0(s,v) < o(s,u) +w(u,v)

=0<4d(s,u) +w(u,v) — (s, v)

>< / how h defined

0 < w(u,v)+ h(u) — h(v) = w(u,v)

What are two ways you can compute
the Fibonacci numbers?

TL;DR dynamic programming

Fn - Fn—l T Fn—Z
with F =0, F =1

Which way is better?

TL;DR dynamic programming
One way, simply use the definition

Recursive:
F(n):
if(n==1 or n==0)
return n
else return F(n-1)+F(n-2)

Another way, compute F(2), then F(3)
I ... until you get to F(n)

TL;DR dynamic programming

Bottom up:
A[0]=0
All]=1

fori=2ton
Ali]l = Ali-1] + Ali-2]

TL;DR dynamic programming

This second way is much faster

[t turns out you can take pretty much
any recursion and solve it this way
(called “dynamic programming”)

[t can use a bit more memory,
but much faster

How many multiplication operations
I does it take to compute:

TL;DR dynamic programming

How many multiplication operations
I does it take to compute:

TL;DR dynamic programming

x*? Answer: 2

x19? Answer: 4

Can compute x* with 2 operations:
X* = X * x (store this value)
x4 = x2 * x2

TL;DR dynamic programming

Save CPU by using more memory!

Can compute x" using O(lg n) ops
Also true if x is a matrix

I37

I Shortest paths using matrices

I path (p) is also a shortest path

x ..PJ.T -~ -!!JZI"' g

Any sub-path (p,) of a shortest

Thus we can recursively define a
shortest path Por = <Vg» ++s V>, @S

w(p,,)=min, . (W(p, 4)T W("k-1",k))

I38

I Shortest paths using matrices
Thus a shortest path (using less than
I m edges) can be defined as:

m — |m — y m-1 1
L = min, (I, +1 k,J.),

1,]

where L' is the edge weights matrix

Can use dynamic programming to
find an efficient solution

I39

I Shortest paths using matrices
L™ is not the m™ power of L, but

I the operations are very similar:

Lm=1m. = min, (1™, + llk,j) // ours

m=Im o= Y lm'li,k*llk,j) //real times
Thus we can use our multiplication
saving technique here too!
(see: MatrixAPSPmult.java)

I Shortest paths using matrices
All-pairs-shortest-paths(W)
I L(1)=W,n=W.rows, m =1
while m <n

L(2m) = ESP(L(m), L(m))

m = 2m
return L(m)

(ESP is L. min op on previous slide)

I41

I Shortest paths using matrices
Runtime:

| vieig v

Correctness:
By definition (brute force with some
computation savers)

I Floyd-Warshall

The Floyd-Warshall is similar but
I uses another shortest path property

Suppose we have a graph G, if we
add a single vertex k to get G'

We now need to recompute all
shortest paths

I Floyd-Warshall

Either the path goes through Kk,
I or remains unchanged

intermediate nodes in intermediate nodes in
{1,...,k-11 {1,...,k-1}

. |'jl k =
|_/__/\—> w]

intermediate nodes in

110Ky

K — 1] k-1 k-1 k-1
d* =min (d“' , &' +d',)

I Floyd-Warshall

Floyd-Warshall(W) // dynamic prog
dOLj = Wi,j, n = W.rows
fork=1ton

fori=1ton

forj=1ton

K — mi k-1 k-1 k-1
d* =min (d“' , &' +d',)

I Floyd-Warshall

Runtime:
| o(vp)

Correctness:
Again, by definition of shortest path

